Skip to main content
Log in

Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

BODIPY fluorophores linked with an imidazo-phenanthroline donor at α and β positions have been synthesized. Intriguing intramolecular charge transfer phenomenon is observed in both the dyes which has been extensively investigated using UV–vis absorption, steady-state and time-resolved fluorescence measurements. H-bonding and intrinsic polarity of the solvents has modulated the absorption and emission bands of these fluorophores strongly causing significant increase in the Stokes shifts. In spite of having difference only in terms of the position of donor subunit, the photophysics of these dyes are not only significantly different from each other, but contradictory too. Interestingly, acidochromic studies revealed the shuttling mechanism between ICT and PET processes for BDP 2. Quantum chemical calculations have been employed further to support experimental findings. DFT and TD-DFT method of analysis have been used to optimize ground and excited state geometries of the synthesized dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lu H, Mack J, Yang Y, Shen Z (2014) Structural modification strategies for the rational design of red/NIR region BODIPYs. Chem Soc Rev 43:4778–4823. https://doi.org/10.1039/C4CS00030G

    Article  CAS  PubMed  Google Scholar 

  2. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172. https://doi.org/10.1039/C1CS15132K

    Article  CAS  PubMed  Google Scholar 

  3. Kamkaew A, Lim SH, Lee HB et al (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88. https://doi.org/10.1039/c2cs35216h

    Article  CAS  PubMed  Google Scholar 

  4. Bañuelos J (2016) BODIPY Dye, the most versatile fluorophore. Ever? Chem Rec 16:335–348. https://doi.org/10.1002/tcr.201500238

    Article  PubMed  Google Scholar 

  5. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent bodipy dyes: versatility unsurpassed. Angew Chem Int Ed 47:1184–1201. https://doi.org/10.1002/anie.200702070

    Article  CAS  Google Scholar 

  6. Ni Y, Wu J (2014) Far-red and near infrared BODIPY dyes: synthesis and applications for fluorescent pH probes and bio-imaging. Org Biomol Chem 12:3774–3791. https://doi.org/10.1039/c3ob42554a

    Article  CAS  PubMed  Google Scholar 

  7. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932. https://doi.org/10.1021/cr078381n

    Article  CAS  PubMed  Google Scholar 

  8. Alizadeh N, Akbarinejad A, Lu E et al (2015) Soluble fluorescent polymeric nanoparticles based on pyrrole derivatives: synthesis, characterization and their structure dependent sensing properties. J Mater Chem C 3:9910–9920. https://doi.org/10.1039/C5TC01982F

    Article  CAS  Google Scholar 

  9. Jahanian MT, Akbarinejad A, Alizadeh N (2017) Design of a sensing platform with dual performance for detection of hydrogen peroxide and Fe3+ based on a new fluorescent oligo N-phenylpyrrole derivative. Sensors Actuators B Chem 240:971–978. https://doi.org/10.1016/j.snb.2016.09.078

    Article  CAS  Google Scholar 

  10. Rurack K, Kollmannsberger M, Daub J (2001) A highly efficient sensor molecule emitting in the near infrared (NIR): 3,5-distyryl-8-(p-dimethylaminophenyl)difluoroboradiaza-s-indacene. New J Chem 25:289–292. https://doi.org/10.1039/b007379m

    Article  CAS  Google Scholar 

  11. Wang D, Shiraishi Y, Hirai T (2010) A distyryl BODIPY derivative as a fluorescent probe for selective detection of chromium(III). Tetrahedron Lett 51:2545–2549. https://doi.org/10.1016/j.tetlet.2010.03.013

    Article  CAS  Google Scholar 

  12. Banuelos-Prieto J, Agarrabeitia AR, Garcia-Moreno I et al (2010) Controlling optical properties and function of BODIPY by using asymmetric substitution effects. Chem Eur J 16:14094–14105. https://doi.org/10.1002/chem.201002095

    Article  CAS  PubMed  Google Scholar 

  13. Gai L, Mack J, Lu H et al (2014) New 2,6-distyryl-substituted BODIPY isomers: synthesis, photophysical properties, and theoretical calculations. Chem Eur J 20:1091–1102. https://doi.org/10.1002/chem.201303291

    Article  CAS  PubMed  Google Scholar 

  14. Zhu S, Zhang J, Vegesna G et al (2012) Controlled Knoevenagel reactions of methyl groups of 1,3,5,7-tetramethyl BODIPY dyes for unique BODIPY dyes. RSC Adv 2:404–407. https://doi.org/10.1039/c1ra00678a

    Article  CAS  Google Scholar 

  15. Han J, Gonzalez O, Aguilar-Aguilar A et al (2009) 3- and 5-functionalized BODIPYs via the Liebeskind-Srogl reaction. Org Biomol Chem 7:34–36. https://doi.org/10.1039/b818390b

    Article  CAS  PubMed  Google Scholar 

  16. Richards GJ, Gobo Y, Yamamura M, Nabeshima T (2015) Biphenyl appended BODIPY derivatives showing combined environmental polarity and heavy metal cation sensing functionality. New J Chem 39:5886–5889. https://doi.org/10.1039/C5NJ00611B

    Article  CAS  Google Scholar 

  17. Luo L, Wu D, Li W et al (2014) Regioselective decarboxylative direct C-H arylation of boron dipyrromethenes (BODIPYs) at 2,6-positions: a facile access to a diversity-oriented BODIPY library. Org Lett 16:6080–6083. https://doi.org/10.1021/ol502883x

    Article  CAS  PubMed  Google Scholar 

  18. Leen V, Leemans T, Boens N, Dehaen W (2011) 2- and 3-monohalogenated BODIPY dyes and their functionalized analogues: synthesis and spectroscopy. Eur J Org Chem 4386–4396. https://doi.org/10.1002/ejoc.201100324

  19. Poronik YM, Yakubovskyi VP, Shandura MP et al (2010) 3,5-Bis(benzothiazolyl)-substituted BODIPY dyes. Eur J Org Chem 2746–2752. https://doi.org/10.1002/ejoc.201000084

  20. Madhu S, Sharma DK, Basu SK et al (2013) Sensing Hg(II) in vitro and in vivo using a benzimidazole substituted BODIPY. Inorg Chem 52:11136–11145. https://doi.org/10.1021/ic401365x

    Article  CAS  PubMed  Google Scholar 

  21. Fang H-P, Wu Y-H, Lin H-C (2013) Synthesis and study of novel supramolecular nanocomposites containing aryl-imidazo-phenanthroline-based metallo-polymers (H-donors) and surface-modified ZnO nanoparticles (H-acceptors). Tetrahedron 69:293–301. https://doi.org/10.1016/j.tet.2012.10.031

    Article  CAS  Google Scholar 

  22. Alreja P, Kaur N (2015) A new multifunctional 1, 10-phenanthroline based fluorophore for anion and cation sensing. J Lumin 168:186–191. https://doi.org/10.1016/j.jlumin.2015.08.010

    Article  CAS  Google Scholar 

  23. Sangeetha S, Sathyaraj G, Muthamilselvan D et al (2012) Structurally modified 1,10-phenanthroline based fluorophores for specific sensing of Ni2+ and Cu2+ ions. Dalton Trans 41:5769–5773. https://doi.org/10.1039/c2dt30525a

    Article  CAS  PubMed  Google Scholar 

  24. Tao T, Wang SR, Chen L et al (2015) Synthesis and aggregation-induced emission of a pyrene decorated chiral BODIPY chromophore. Inorg Chem Commun 62:67–70. https://doi.org/10.1016/j.inoche.2015.10.029

    Article  CAS  Google Scholar 

  25. Anzenbacher P, Tyson DS, Jursíková K, Castellano FN (2002) Luminescence lifetime-based sensor for cyanide and related anions. J Am Chem Soc 124:6232–6233. https://doi.org/10.1021/ja0259180

    Article  CAS  PubMed  Google Scholar 

  26. Yoldas A, Algi F (2015) An imidazo-phenanthroline scaffold enables both chromogenic Fe(II) and fluorogenic Zn(II) detection. RSC Adv 5:7868–7873. https://doi.org/10.1039/C4RA14182B

    Article  CAS  Google Scholar 

  27. Ziessel R, Bonardi L, Retailleau P, Ulrich G (2006) Isocyanate-, isothiocyanate-, urea-, and thiourea-substituted boron dipyrromethene dyes as fluorescent probes. J Org Chem 71(8):3093–3102. https://doi.org/10.1021/jo0600151

  28. Filarowski A, Lopatkova M, Lipkowski P et al (2015) Solvatochromism of BODIPY-schiff dye. J Phys Chem B 119:2576–2584. https://doi.org/10.1021/jp508718d

    Article  CAS  PubMed  Google Scholar 

  29. Haefele A, Zedde C, Retailleau P et al (2010) Boron asymmetry in a BODIPY derivative. Org Lett 12:1672–1675. https://doi.org/10.1021/ol100109j

    Article  CAS  PubMed  Google Scholar 

  30. Jacobsen JA, Stork JR, Magde D, Cohen SM (2010) Hydrogen-bond rigidified BODIPY dyes. Dalton Trans 39:957–962. https://doi.org/10.1039/b921772j

    Article  CAS  PubMed  Google Scholar 

  31. Lauderdale WJ, Coolidge MB (1995) Basis set effects on the nonlinear optical properties of selected linear diacetylenes. J Phys Chem 99:9368–9373. https://doi.org/10.1021/j100023a011

    Article  CAS  Google Scholar 

  32. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  33. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  34. Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335. https://doi.org/10.1016/0009-2614(96)00349-1

    Article  CAS  Google Scholar 

  35. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093. https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  36. Kothavale S, Sekar N (2017) Novel pyrazino-phenanthroline based rigid donor-π-acceptor compounds: a detail study of optical properties, acidochromism, solvatochromism and structure-property relationship. Dye Pigment 136:31–45. https://doi.org/10.1016/j.dyepig.2016.08.032

    Article  CAS  Google Scholar 

  37. Goswami S, Das AK, Maity S (2013) “PET” vs. “push-pull” induced ICT: a remarkable coumarinyl-appended pyrimidine based naked eye colorimetric and fluorimetric sensor for the detection of Hg2 + ions in aqueous media with test trips. Dalton Trans 42:16259–16263. https://doi.org/10.1039/c3dt52252k

    Article  CAS  PubMed  Google Scholar 

  38. Panchenko PA, Fedorov YV, Fedorova OA, Jonusauskas G (2013) Comparative analysis of the PET and ICT sensor properties of 1,8-naphthalimides containing aza-15-crown-5 ether moiety. Dye Pigment 98:347–357. https://doi.org/10.1016/j.dyepig.2013.03.008

    Article  CAS  Google Scholar 

  39. Wei T, Wang J, Chen Y, Han Y (2015) Combining the PeT and ICT mechanisms into one chemosensor for the highly sensitive and selective detection of zinc. RSC Adv 5:57141–57146. https://doi.org/10.1039/C5RA11194C

    Article  CAS  Google Scholar 

  40. Coskun A, Deniz E, Akkaya EU (2005) Effective PET and ICT switching of boradiazaindacene emission: a unimolecular, emission-mode, molecular half-subtractor with reconfigurable logic gates. Org Lett 7:5187–5189. https://doi.org/10.1021/ol052020h

    Article  CAS  PubMed  Google Scholar 

  41. Bozdemir OA, Guliyev R, Buyukcakir O et al (2010) Selective manipulation of ICT and PET processes in styryl-bodipy derivatives: applications in molecular logic and fluorescence sensing of metal ions. J Am Chem Soc 132:8029–8036. https://doi.org/10.1021/ja1008163

    Article  CAS  PubMed  Google Scholar 

  42. Choi H, Lee JH, Jung JH (2014) Fluorometric/colorimetric logic gates based on BODIPY-functionalized mesoporous silica. Analyst 139:3866–3870. https://doi.org/10.1039/c4an00251b

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank Dr. H. Pal of Radiation & Photochemistry Division, BARC, Mumbai for allowing fluorescence lifetime decay measurements of dye samples in his lab. Author S.T. thanks DAE-BRNS for a Senior Research Fellowship. AKR and NS acknowledges DAE-BRNS for supporting this collaboration research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alok K. Ray or Nagaiyan Sekar.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Additional information about synthesis, characterization, fluorescence decay curves and TDDFT results are provided.

Supplementary material 1 (DOCX 1748 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thakare, S.S., Chakraborty, G., Kothavale, S. et al. Proton Induced Modulation of ICT and PET Processes in an Imidazo-phenanthroline Based BODIPY Fluorophores. J Fluoresc 27, 2313–2322 (2017). https://doi.org/10.1007/s10895-017-2173-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2173-4

Keywords

Navigation