Skip to main content
Log in

Comparison of the Optoelectronic Performance of Neutral and Cationic Forms of Riboflavin

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The riboflavin dye 2,3,4,5-tetra-O-acetyl-1-[3-(6-bromohexyl)-7,8-dimethyl-2,4-dioxo-3,4-dihydrobenzo[g]pteridin-10(2H)-yl]-1-deoxypentitol and its pyridinium salt were synthesized, and studied by absorption and fluorescence spectroscopy in solutions and on thin film states. The first absorption band of riboflavin-pyridinium salt derivative is red-shifted by 10 nm compared to neutral one on film. Cationic riboflavin derivative shows significant wavelength changes on its fluorescence emission spectrum in the excited state depending on the solvent polarity and the electronic environment. The fluorescence quantum yields of cationic riboflavin gave much higher values as compared to that of its neutral form. The fluorescence lifetimes were found to be in the range of 5.5–6.6 ns with mono − exponential behavior. These dyes possess low-lying HOMO energy levels which are suitable to be able to inject holes to donor polymers so that they can be used as acceptor component in the active layer of bulk heterojunction solar cells (BHJ-SCs). Photovoltaic responses are reported for P3HT:riboflavin active layer wherein the synthesized dyes are used as acceptor component. Also, neutral riboflavin shows greater electron mobility value of 1.3 × 10−3 cm2/V∙s compared to its cationic derivative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lu CY, Wang WF, Lin WZ, Han ZH, Yao SD, Lin NY (1999) Generation and photosensitization properties of the oxidized radical of riboflavin: a laser flash photolysis study. J Photoch Photobio B 52:111–116

    Article  CAS  Google Scholar 

  2. Lu CY, Lin WZ, Wang WF, Han ZH, Yao S, Lin NY (2000) Riboflavin (VB2) photosensitized oxidation of 2′-deoxyguanosine-5′-monophosphate (dGMP) in aqueous solution: a transient intermediates study. PCCP Phys Chem Ch Ph 2:329–334

    Article  CAS  Google Scholar 

  3. Alva S, Phadke RS (1995) Riboflavın - a potential material for molecular electronics applications. Biosystems 35:153–156

    Article  CAS  PubMed  Google Scholar 

  4. Andrés-Lacueva C, Mattivi F, Tonon D (1998) Determination of riboflavin, flavin mononucleotide and flavin–adenine dinucleotide in wine and other beverages by high-performance liquid chromatography with fluorescence detection. J Chromatogr A 823:355–363

    Article  PubMed  Google Scholar 

  5. Insinska-Rak M, Golczak A, Sikorski M (2012) Photochemistry of riboflavin derivatives in methanolic solutions. J Phys Chem A 116:1199–1207

    Article  CAS  PubMed  Google Scholar 

  6. Choe E, Huang R, Min DB (2005) Chemical reactions and stability of riboflavin in foods. J Food Sci 70:R28–R36

    Article  CAS  Google Scholar 

  7. Lee YH, Lee J, Min DB, Pascall MA (2014) Effect of riboflavin on the photo-oxidative stability of vegetable oil in salad dressing. Food Chem 152:349–354

    Article  CAS  PubMed  Google Scholar 

  8. Khaydukov EV, Mironova KE, Semchishen VA, Generalova AN, Nechaev AV, Khochenkov DA, Stepanova EV, Lebedev OI, Zvyagin AV, Deyev SM, Panchenko VY (2016) Riboflavin photoactivation by upconversion nanoparticles for cancer treatment. Sci Rep 6:351031–351039

    Article  Google Scholar 

  9. Maisch T, Eichner A, Spath A, Gollmer A, Konig B, Regensburger J, Baumler W (2014) Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS one 9: e111792(1−8)

  10. Zirak P, Penzkofer A, Mathes T, Hegemann P (2009) Photo-dynamics of roseoflavin and riboflavin in aqueous and organic solvents. Chem Phys 358:111–122

    Article  CAS  Google Scholar 

  11. Silva AV, López-Sánchez A, Junqueira HC, Rivas L, Baptista MS, Orellana G (2015) Riboflavin derivatives for enhanced photodynamic activity against Leishmania parasites. Tetrahedron 71:457–462

    Article  CAS  Google Scholar 

  12. Challier C, Mártire DO, García NA, Criado S (2017) Visible light-mediated photodegradation of imidazoline drugs in the presence of riboflavin: possible undesired effects on imidazoline-based eye drops. J Photoch Photobio A 332:399–405

    Article  CAS  Google Scholar 

  13. Abdel-Fattah TM, Ebrahim S, Soliman M, Hafez M (2013) Dye-sensitized solar cells based on polyaniline-single wall carbon nanotubes composite. Ecs J Solid State Sc 2:M13–M16

    Article  CAS  Google Scholar 

  14. Ebrahim S, Soliman M, Anas M, Hafez M, Abdel-Fattah T (2013) Dye-sensitized solar cell based on polyaniline/multiwalled carbon nanotubes counter electrode. Int J Photoenergy 2013:906820(1−6)

  15. Mollahosseini M, Karunaratne E, Gibson GN, Gascon JA, Papadimitrakopoulos F (2016) Fullerene-assisted photoinduced charge transfer of single-walled carbon nanotubes through a flavin helix. J Am Chem Soc 138:5904–5915

    Article  CAS  PubMed  Google Scholar 

  16. Yu X, Eymur S, Singh V, Yang B, Tonga M, Bheemaraju A, Cooke G, Subramani C, Venkataraman D, Stanley RJ, Rotello VM (2012) Flavin as a photo-active acceptor for efficient energy and charge transfer in a model donor-acceptor system. Phys Chem Chem Phys 14:6749–6754

    Article  CAS  PubMed  Google Scholar 

  17. Murakami M, Ohkubo K, Fukuzumi S (2010) Inter- and intramolecular photoinduced electron transfer of flavin derivatives with extremely small reorganization energies. Chem-Eur J 16:7820–7832

    Article  CAS  PubMed  Google Scholar 

  18. Drössler P, Holzer W, Penzkofer A, Hegemann P (2002) pH dependence of the absorption and emission behaviour of riboflavin in aqueous solution. Chem Phys 282:429–439

    Article  Google Scholar 

  19. Tyagi A, Zirak P, Penzkofer A, Mathes T, Hegemann P, Mack M, Ghisla S (2009) Absorption and emission spectroscopic characterisation of 8-amino-riboflavin. Chem Phys 364:19–30

    Article  CAS  Google Scholar 

  20. Legrand YM, Gray M, Cooke G, Rotello VM (2003) Model systems for flavoenzyme activity: relationships between cofactor structure, binding and redox properties. J Am Chem Soc 125:15789–15795

    Article  CAS  PubMed  Google Scholar 

  21. Pommerehne J, Vestweber H, Guss W, Mahrt RF, Bassler H, Porsch M, Daub J (1995) Efficient 2-layer leds on a polymer blend basis. Adv Mater 7:551–554

    Article  CAS  Google Scholar 

  22. Knutson JR, Beechem JM, Brand L (1983) Simultaneous analysis of multiple fluorescence decay curves - a global approach. Chem Phys Lett 102:501–507

    Article  CAS  Google Scholar 

  23. Zuker M, Szabo AG, Bramall L, Krajcarski DT, Selinger B (1985) Delta-function convolution method (dfcm) for fluorescence decay experiments. Rev Sci Instrum 56:14–22

    Article  CAS  Google Scholar 

  24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark MJ, Heyd J, Brothers EN, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09. Wallingford, CT, USA: Gaussian, Inc.; 2009

  25. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138

    Article  Google Scholar 

  26. Goh C, Kline RJ, Mcgehee MD, Kadnikova EN, Frechet JMJ (2005) Molecular-weight-dependent mobilities in regioregular poly(3-hexyl-thiophene) diodes. Appl Phys Lett 86:122110(1–3)

  27. Carbone A, Kotowska BK, Kotowski D (2005) Space-charge-limited current fluctuations in organic semiconductors. Phys rev Lett 95:236601(1–4)

  28. Ogasawara FK, Wang YL, Bobbitt DR (1992) Dynamically modified, biospecific optical fiber sensor for riboflavın binding-protein based on hydrophobically associated 3-octylriboflavin. Anal Chem 64:1637–1642

    Article  CAS  PubMed  Google Scholar 

  29. Di Meo C, Montanari E, Manzi L, Villani C, Coviello T, Matricardi P (2015) Highly versatile nanohydrogel platform based on riboflavin-polysaccharide derivatives useful in the development of intrinsically fluorescent and cytocompatible drug carriers. Carbohyd Polym 115:502–509

    Article  Google Scholar 

  30. Sheraz MA, Kazi SH, Ahmed S, Anwar Z, Ahmad I (2014) Photo, thermal and chemical degradation of riboflavin. Beilstein J Org Chem 10:1999–2012

    Article  PubMed  PubMed Central  Google Scholar 

  31. Moyon NS, Mitra S (2011) Fluorescence solvatochromism in lumichrome and excited-state tautomerization: a combined experimental and DFT study. J Phys Chem A 115:2456–2464

    Article  CAS  PubMed  Google Scholar 

  32. Brouwer AM (2011) Standards for photoluminescence quantum yield measurements in solution (IUPAC technical report). Pure Appl Chem 83:2213–2228

    Article  CAS  Google Scholar 

  33. Sun M, Moore TA, Song P-S (1972) Molecular luminescence studies of flavines. I Excited states of flavines J Am Chem Soc 94:1730–1740

    Article  CAS  Google Scholar 

  34. Insińska-Rak M, Sikorska E, Bourdelande JL, Khmelinskii IV, Prukała W, Dobek K, Karolczak J, Machado IF, Ferreira LFV, Dulewicz E, Komasa A, Worrall DR, Kubicki M, Sikorski M (2007) New photochemically stable riboflavin analogue—3-methyl-riboflavin tetraacetate. J Photoch Photobio A 186:14–23

    Article  Google Scholar 

  35. Narang U, Zhao CF, Bhawalkar JD, Bright FV, Prasad PN (1996) Characterization of a new solvent-sensitive two-photon-induced fluorescent (aminostyryl)pyridinium salt dye. J Phys Chem-US 100:4521–4525

    Article  CAS  Google Scholar 

  36. Turkewitsch P, Darling GD, Powell WS (1998) Enhanced fluorescence of 4-(p-dimethylaminostyryl)pyridinium salts in the presence of biological macromolecules. J Chem Soc Faraday Trans 94:2083–2087

    Article  CAS  Google Scholar 

  37. Tan SL, Webster RD (2012) Electrochemically induced chemically reversible proton-coupled electron transfer reactions of riboflavin (vitamin B2). J Am Chem Soc 134:5954–5964

    Article  CAS  PubMed  Google Scholar 

  38. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CJ (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency

Download references

Acknowledgements

This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) with the project number of 113Z250. We thank to Ege University for the support of the use of Gaussian 09 W programme for DFT calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haluk Dinçalp.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saltan, G.M., Kıymaz, D.A., Zafer, C. et al. Comparison of the Optoelectronic Performance of Neutral and Cationic Forms of Riboflavin. J Fluoresc 27, 1975–1984 (2017). https://doi.org/10.1007/s10895-017-2135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-017-2135-x

Keywords

Navigation