Skip to main content
Log in

Study on the Synthesis, Photophysical Properties and Singlet Oxygen Generation Behavior of Bodipy-Functionalized Cyclotriphosphazenes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new series of bodipy-functionalized cyclotriphosphazene derivatives were designed and synthesized. The identities of all newly synthesized compounds were confirmed by using 1H, 13C, 31P NMR spectroscopies. The photophysical properties of bodipy-functionalized cyclotriphosphazenes were investigated via absorption and fluorescense spectroscopies in dichloromethane. Singlet oxygen generation capacities of new compounds were also examined using the trap molecule 1,3-diphenylisobenzofuran. The targeted compounds showed high molar extinction coefficients in the NIR region and respectable singlet oxygen quantum yields when compared to that of methylene blue. The new bodipy-functionalized cyclotriphosphazenes are efficient photosensitizers to be potentially used for the singlet oxygen generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233–234:351–371

    Article  Google Scholar 

  2. Kim H, Kim W, Mackeyev Y, Lee GS, Kim HJ, Tachikawa T, Hong S, Lee S, Kim J, Wilson LJ, Majima T, Alvarez PJJ, Choi W, Lee J (2012) Selective oxidative degradation of organic pollutants by singlet oxygen-mediated photosensitization: Tin Porphyrin versus C60Aminofullerene systems. Environ Sci Technol 46:9606–9613

    Article  CAS  PubMed  Google Scholar 

  3. Sharman WM, Allen GM, VanLier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4:507–517

    Article  CAS  PubMed  Google Scholar 

  4. Agnez-Lima LF, Melo JTA, Silva AE, Oliveira AHS, Timoteo ARS, Lima-Bessa KM, Martinez GR, Medeiros MHG, Mascio PD, Galhardo RS, Menck CFM (2012) DNA damage by singlet oxygen and cellular protective mechanisms. Mutat Res 751:15–28

    Article  CAS  Google Scholar 

  5. Kamkaew A, Lim SH, Lee HB, Kiew LV, Chungcand LY, Burgess K (2013) BODIPY dyes in photodynamic therapy. Chem Soc Rev 42:77–88

    Article  CAS  PubMed  Google Scholar 

  6. Bonnett R (1995) Photosensitizers of the porphyrin and phthalocyanine series for photodynamic therapy. Chem Soc Rev 24:19–33. doi:10.1039/CS9952400019

    Article  CAS  Google Scholar 

  7. Lovell JF, Liu TWB, Chenand J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    Article  CAS  PubMed  Google Scholar 

  8. Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Atilgan S, Ekmekci Z, Dogan AL, Guc D, Akkaya EU (2006) Water soluble distyryl-boradiazaindacenes as efficient photosensitizers for photodynamic therapy. Chem Commun 4398–4400. doi:10.1039/B612347C

  10. Cakmak Y, Kolemen S, Duman S, Dede Y, Dolen Y, Kilic B, Kostereli Z, Tatar Yildirim L, Dogan AL, Guc D, Akkaya EU (2011) Designing excited states: theory-guided access to efficient photosensitizers for photodynamic action. Angew Chem Int Ed 50:11937–11941

    Article  CAS  Google Scholar 

  11. Yogo T, Urano Y, Ishitsuka Y, Maniwaand F, Nagano T (2005) Highly efficient and photostable photosensitizer based on BODIPY chromophore. J Am Chem Soc 127:12162–12163

    Article  CAS  PubMed  Google Scholar 

  12. Awuahaband SG, You Y (2012) Boron dipyrromethene (BODIPY)-based photosensitizers for photodynamic therapy. RSC Adv 2:11169–11183

    Article  Google Scholar 

  13. Zhao J, Wu W, Sun J, Guo S (2013) Triplet photosensitizers: from molecular design to applications. Chem Soc Rev 42:5323–5351

    Article  CAS  PubMed  Google Scholar 

  14. Zhao J, Xu K, Yang W, Wang Z, Zhong F (2015) The triplet excited state of Bodipy: formation, modulation and application. Chem Soc Rev 44:8904–8939

    Article  CAS  PubMed  Google Scholar 

  15. Adarsh N, Avirah RR, Ramaiah D (2010) Tuning photosensitized singlet oxygen generation efficiency of novel Aza-BODIPY dyes. Org Lett 12(20):5720–5723

    Article  CAS  PubMed  Google Scholar 

  16. Rao MR, Bolligarla R, Butcherand RJ, Ravikanth M (2010) Hexa boron-dipyrromethene cyclotriphosphazenes: synthesis, crystal structure, and photophysical properties. Inorg Chem 49:10606–10616

    Article  CAS  PubMed  Google Scholar 

  17. Cosut B, Hacıvelioglu F, Durmuş M, Kılıç A, Yesilot S (2009) The synthesis, thermal and photophysical properties of phenoxycyclotriphosphazenyl-substituted cyclic and polymeric phosphazenes. Polyhedron 28:2510–2516

    Article  CAS  Google Scholar 

  18. Çiftçi GY, Şenkuytu E, Durmuş M, Yuksel F, Kılıç A (2013) Fluorenylidene bridged cyclotriphosphazenes: ‘turn off’ fluorescence probe for Cu2+ and Fe3+ ions. Dalton Trans 42:14916–14926

    Article  Google Scholar 

  19. Şenkuytu E, Eçik ET, Durmuş M, Çiftçi GY (2015) Monofunctional amines substituted fluorenylidene bridged cyclotriphosphazenes: ‘Turn-off’ fluorescence chemosensors for Cu2+ and Fe3+ ions. Polyhedron 101:223–229

    Article  Google Scholar 

  20. Kagit R, Yildirim M, Ozay O, Yesilot S, Ozay H (2014) Phosphazene based multicentered naked-eye fluorescent sensor with high selectivity for Fe3+ ions. Inorg Chem 53(4):2144–2151

    Article  CAS  PubMed  Google Scholar 

  21. Yıldırım T, Bilgin K, Çiftçi GY, Eçik ET, Şenkuytu E, Uludağ Y, Tomak L, Kılıç A (2012) Synthesis, cytotoxicity and apoptosis of cyclotriphosphazene compounds as anti-cancer agents. Eur J Med Chem 52:213–220

    Article  PubMed  Google Scholar 

  22. Siwy M, Seük D, Kaczmarczyk B, Jaroszewicz I, Nasulewicz A, Pelczynska M, Nevozhayand D, Opolski A (2006) Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy)cyclotriphosphazene derivatives. J Med Chem 49:806–810

    Article  CAS  PubMed  Google Scholar 

  23. Allen CW (1991) Regie and stereochemical control in substitution reactions of cyclophosphazenes. Chem Rev 91:119–135

    Article  CAS  Google Scholar 

  24. Chandrasekharand V, Nagendran S (2001) Phosphazenes as scaffolds for the construction of multi-site coordination ligands. Chem Soc Rev 30:193–203

    Article  Google Scholar 

  25. Caminade AM, Hameauaand A, Majorala JP (2016) The specific functionalization of cyclotriphosphazene for the synthesis of smart dendrimers. Dalton Trans 45:1810–1822

    Article  CAS  PubMed  Google Scholar 

  26. Rao MR, Gayatri G, Kumar A, Sastryand GN, Ravikanth M (2009) Cyclotriphosphazene ring as a platform for multiporphyrin assemblies. Chem Eur J 15:3488–3496

    Article  CAS  PubMed  Google Scholar 

  27. Franc G, Maze`res S, Turrin CO, Vendier L, Duhayon C, Caminadeand AM, Majoral JP (2007) Synthesis and properties of dendrimers possessing the same fluorophore(s) located either peripherally or off-center. J Org Chem 72:8707–8715

    Article  CAS  PubMed  Google Scholar 

  28. Çiftçi GY, Eçik ET, Bulut M, Yuksel F, Kılıç A, Durmus M (2013) Synthesis and characterization of dicoumarol substituted cyclotriphosphazenes. Inorg Chim Acta 398:106–112

    Article  Google Scholar 

  29. Cosut B (2014) Highly efficient energy transfer in BODIPY-pyrene decorated Cyclotriphosphazene. Dyes Pigments 100:11–16

    Article  CAS  Google Scholar 

  30. Çiftçi GY, Şenkuytu E, Incir SA, Yuksel F, Olcer Z, Yildirim T, Kılıç A, Uludag Y (2016) First paraben substituted cyclotetraphosphazene compounds and DNA interaction analysis with a new automated biosensor. Biosens Bioelectron 80:331–338

    Article  PubMed  Google Scholar 

  31. Eçik ET, Şenkuytu E, Cebesoy Z, Çiftçi GY (2016) BODIPY decorated dendrimeric cyclotriphosphazene photosensitizers: synthesis and efficient singlet oxygen generators. RSC Adv 6:47600–47606

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Scientific and Technical Research Council of Turkey for financial support TUBITAK (Grant 114Z445).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Tanrıverdi Eçik.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 2126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şenkuytu, E., Cebesoy, Z., Çiftçi, G.Y. et al. Study on the Synthesis, Photophysical Properties and Singlet Oxygen Generation Behavior of Bodipy-Functionalized Cyclotriphosphazenes. J Fluoresc 27, 595–601 (2017). https://doi.org/10.1007/s10895-016-1987-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1987-9

Keywords

Navigation