Skip to main content
Log in

Photochemical Tuning of Tris-Bidentate Acridine- and Phenazine-Based Ir(III) Complexes

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Five new Ir(III) complexes of the type [Ir(ppy)2L]+ (where ppy = 2-phenylpyridine, L = bidentate N^N ligand) bearing linear and elbow-shaped acridine- and phenazine-based extended planar aromatic ligands have been successfully synthesized and characterized. The electrochemical and photochemical studies revealed that all complexes allow emission in the range 589–601 nm from excited states corresponding to a charge transfer between an Ir-ppy fragment and the extended planar ligand. Luminescence quenching occurs in water for [Ir(ppy)2dpac]+ (Ir-DPAC), [Ir(ppy)2dpacF2]+ (Ir-DPACF 2 ), [Ir(ppy)2dpacF4]+ (Ir-DPACF 4 ) and [Ir(ppy)2bdppz]+ (Ir-BDPPZ), while solely partial quenching is observed for [Ir(ppy)2npp]+ (Ir-NPP). This “light-switch” effect has been ascribed to the possible formation of a non-emissive mono-hydrogen-bonded excited state for the four complexes. The “elbow shaped” of Ir-NPP is believed to prevent the non-chelating nitrogen atom of the npp ligand to form H-bond with solvent molecules. The results emphasized the potential of small chemical modifications of the extended planar ligand on the properties of the corresponding Ir(III) complexes. Their tunable properties make them ideal candidates for applications such as DNA photoprobes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Friedman AE, Chambron JC, Sauvage JP, Turro NJ, Barton JK (1990) A molecular light switch for DNA: Ru(bpy)2(dppz)2+. J Am Chem Soc 112:4960–4962

    Article  CAS  Google Scholar 

  2. Lo KK, Chung CK, Zhu N (2006) Nucleic acid intercalators and avidin probes derived from luminescent cyclometalated iridium(III)-dipyridoquinoxaline and -dipyridophenazine complexes. Chem Eur J 12:1500–1512

    Article  CAS  PubMed  Google Scholar 

  3. Elias B, Creely C, Doorley GW, Feeney MM, Moucheron C, Kirsch-DeMesmaeker A, Dyer J, Grills DC, George MW, Matousek P, Parker AW, Towrie M, Kelly JM (2008) Photooxidation of guanine by a ruthenium dipyridophenazine complex intercalated in a double-stranded polynucleotide monitored directly by picosecond visible and infrared transient absorption spectroscopy. Chem Eur J 14:369–375

    Article  CAS  PubMed  Google Scholar 

  4. Shao F, Elias B, Lu W, Barton JK (2007) Synthesis and characterization of iridium(III) cyclometalated complexes with oligonucleotides: insights into redox reactions with DNA. Inorg Chem 46:10187–10199

    Article  CAS  PubMed  Google Scholar 

  5. Lim MH, Song H, Olmon ED, Dervan EE, Barton JK (2009) Sensitivity of Ru(bpy)2dppz2+ luminescence to DNA defects. Inorg Chem 48:5392–5397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wachter E, Moya D, Parkin S, Glazer EC (2016) Ruthenium complex "light switches" that are selective for different G-quadruplex structures. Chem Eur J 22:550–559

    Article  CAS  PubMed  Google Scholar 

  7. Olson EJC, Hu D, Hörmann A, Jonkman AM, Arkin MR, Stemp EDA, Barton JK, Barbara PF (1997) First observation of the key intermediate in the “light-switch” mechanism of [Ru(phen)2dppz]2+. J Am Chem Soc 119:11458–11467

    Article  CAS  Google Scholar 

  8. Brennaman MK, Meyer TJ, Papanikolas JM (2004) [Ru(bpy)2dppz]2+ light-switch mechanism in protic solvents as studied through temperature-dependent lifetime measurements. J Phys Chem A 108:9938–9944

    Article  CAS  Google Scholar 

  9. Olofsson J, Wilhelmsson LM, Lincoln P (2004) Effects of methyl substitution on radiative and solvent quenching rate constants of [Ru(phen)2dppz]2+ in polyol solvents and bound to DNA. J Am Chem Soc 126:15458–15465

    Article  CAS  PubMed  Google Scholar 

  10. Poynton FE, Hall JP, Keane PM, Schwarz C, Sazanovich IV, Towrie M, Gunnlaugsson T, Cardin CJ, Cardin DJ, Quinn SJ, Long C, Kelly JM (2016) Direct observation by time-resolved infrared spectroscopy of the bright and the dark excited states of the [Ru(phen)2(dppz)]2+ light-switch compound in solution and when bound to DNA. Chem Sci 7:3075–3084

    Article  CAS  Google Scholar 

  11. Kobayashi K, Ohtsu H, Nozaki K, Kitagawa S, Tanaka K (2016) Photochemical properties and reactivity of a Ru compound containing an NAD/NADH-functionalized 1,10-phenanthroline ligand. Inorg Chem 55:2076–2084

    Article  CAS  PubMed  Google Scholar 

  12. Deraedt Q, Marcélis L, Auvray T, Hanan GS, Loiseau F, Elias B (2016) Design and photophysical studies of acridine-based Ru(II) complexes for application as DNA photoprobes. Eur J Inorg Chem 2016(22):3649–3658

  13. Deraedt Q, Marcélis L, Loiseau F, Elias B Towards mismatched DNA photoprobes and photoreagents: "elbow-shaped" Ru(II) complexes. Inorg Chem Front submitted

  14. Flamigni L, Barbieri A, Sabatini C, Ventura B, Barigellett F (2007) Photochemistry and photophysics of coordination compounds: iridium. Top Curr Chem 281:143–203

    Article  CAS  Google Scholar 

  15. Lo KK-W, Louie M-W, Zhang KY (2010) Design of luminescent iridium(III) and rhenium(I) polypyridine complexes as in vitro and in vivo ion, molecular and biological probes. Coord Chem Rev 254:2603–2622

    Article  CAS  Google Scholar 

  16. Nonoyama M (1974) Benzo[h]quinolin-10-yl-N iridium(III) complexes. Bull Chem Soc Jpn 47:767–768

    Article  CAS  Google Scholar 

  17. Jacques A, Kirsch-De Mesmaeker A, Elias B (2014) Selective DNA purine base photooxidation by bis-terdentate iridium(III) polypyridyl and cyclometalated complexes. Inorg Chem 53:1507–1512

    Article  CAS  PubMed  Google Scholar 

  18. Coppo P, Plummer EA, De Cola L (2004) Tuning iridium(III) phenylpyridine complexes in the "almost blue" region. Chem. Commun 1774–1775

  19. Volpi G, Garino C, Salassa L, Fiedler J, Hardcastle KI, Gobetto R, Nervi C (2009) Cationic heteroleptic cyclometalated iridium complexes with 1-pyridylimidazo[1,5-alpha]pyridine ligands: exploitation of an efficient intersystem crossing. Chem Eur J 15:6415–6427

    Article  CAS  PubMed  Google Scholar 

  20. Dixon IM, Collin J-P, Sauvage J-P, Flamigni L, Encinas S, Barigelletti F (2000) A family of luminescent coordination compounds: iridium(III) polyimine complexes. Chem Soc Rev 29:385–391

    Article  CAS  Google Scholar 

  21. Bhasikuttan AC, Suzuki M, Nakashima S, Okada T (2002) Ultrafast fluorescence detection in tris(2,2'-bipyridine)ruthenium(II) complex in solution: relaxation dynamics involving higher excited states. J Am Chem Soc 124:8398–8405

    Article  CAS  PubMed  Google Scholar 

  22. Cannizzo A, van Mourik F, Gawelda W, Zgrablic G, Bressler C, Chergui M (2006) Broadband femtosecond fluorescence spectroscopy of [Ru(bpy)3]2+. Angew Chem Int Ed 45:3174–3176

    Article  CAS  Google Scholar 

  23. Very T, Ambrosek D, Otsuka M, Gourlaouen C, Assfeld X, Monari A, Daniel C (2014) Photophysical properties of ruthenium(II) polypyridyl DNA intercalators: effects of the molecular surroundings investigated by theory. Chem Eur J 20:12901–12909

    Article  CAS  PubMed  Google Scholar 

  24. Metcalfe C, Adams H, Haq I, Thomas JA (2003) A ruthenium dipyridophenazine complex that binds preferentially to GC sequences. Chem Commun 1152–1153

  25. Coates CG, Callaghan P, McGarvey JJ, Kelly JM, Jacquet L, Kirsch-De Mesmaeker A (2001) Spectroscopic studies of structurally similar DNA-binding ruthenium (II) complexes containing the dipyridophenazine ligand. J Mol Struct 598:15–25

    Article  CAS  Google Scholar 

  26. Holmlin RE, Yao JA, Barton JK (1999) Dipyridophenazine complexes of Os(II) as red-emitting DNA probes: synthesis, characterization, and photophysical properties. Inorg Chem 38:174–189

    Article  CAS  Google Scholar 

  27. Jackson BA, Barton JK (1997) Recognition of DNA base mismatches by a rhodium intercalator. J Am Chem Soc 119:12986–12987

    Article  CAS  Google Scholar 

  28. Zeglis BM, Pierre VC, Barton JK (2007) Metallo-intercalators and metallo-insertors. Chem Commun 4565–4579

  29. Dixit RB, Patel TS, Vanparia SF, Kunjadiya AP, Keharia HR, Dixit BC (2011) Sci Pharm 79:293–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rehm D, Weller A (1969) Ber Bunsenges Phys Chem 73:834–839

    CAS  Google Scholar 

Download references

Acknowledgments

Q.D. and B.E. gratefully acknowledge the Université catholique de Louvain, the Fonds National pour la Recherche Scientifique (F.R.S.-F.N.R.S.), the Région Wallonne, and the Fondation Louvain (Prix Pierre et Colette Bauchau) for financial support. F.L. thanks the Labex Arcane, France (ANR-11-LABX-0003-01) and the chemistry platform NanoBio campus in Grenoble for luminescence lifetime measurement facilities. Q.D. also warmly thanks Alexandre Jacques, Cédric Lentz and Lionel Marcélis for their scientific help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Elias.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1257 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deraedt, Q., Loiseau, F. & Elias, B. Photochemical Tuning of Tris-Bidentate Acridine- and Phenazine-Based Ir(III) Complexes. J Fluoresc 26, 2095–2103 (2016). https://doi.org/10.1007/s10895-016-1904-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1904-2

Keywords

Navigation