Skip to main content
Log in

A Novel Fluorimetric Bulk Optode Membrane Based on NOS Tridentate Schiff Base for Selective Optical Sensing of Al3+ Ions

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel fluorimetric optode has been developed for the highly selective and sensitive for the determination of ultra trace amounts of Al3+ ions. The proposed fluorescent optode is based on the incorporation of a simple and effective fluorescent sensor tridentate NOS Schiff base N-(2-hydroxynaphthylidene)-2-aminothiophenol (H2L) in a plasticized PVC containing KTpClPB as a lipophilic anionic additive. H2L was synthesized by a facile one-step Schiff base reaction. The plasticized PVC-membrane displays a calibration response for Al3+ ions over a wide concentration range from 1.0 × 10−9 to 4.4 × 10−3 mol/L. The fluorescence signal of the optode membrane can be easily recovered by immersion in 0.01 M EDTA. In addition to high stability and reproducibility, the sensor shows a unique selectivity towards Al3+ ion with respect to common co-existing cations, particularly Ga3+and In3+. The proposed optode was applied successfully for determination of Al3+ in some real samples, including bottled drinking waters, bottled mineral waters and soft drinks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7
Scheme 3
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Czarnik AW (Ed.), Fluorescent chemosensors for ion and molecule recognition, American Chemical Society, Washington, DC, 1993

  2. Callan JF, de Silva AP, Magri DC (2005) Luminiscent sensors and switches in the early twenty-first century. Tetrahedron 61(36):8551–8588

    Article  CAS  Google Scholar 

  3. Desvergne JP, Czarnik AW (Eds.), Chemosensors for Ion and Molecule Recognition, Kluwer, Boston, 1997

  4. Buhlmann P, Pretsch E, Bakker E (1998) Carrier-based ion-selective electrodes and bulk optodes. Part 2.Ionophores for potentiometric and optical sensors. Chem Rev 98(4):1593–1687

    Article  PubMed  Google Scholar 

  5. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cationrecognition. Coord Chem Rev 205(1):3–40

    Article  CAS  Google Scholar 

  6. Abdel Aziz AA, Seda SH, Mohammed SF (2016) Design of a highly sensitive and selective bulk optode based on fluorescence enhancement of N,N-bis-(1-hydroxyphenylimine)2,2-pyridil Schiff base: Monitoring of zinc(II) ion in real samples and DFT calculation. Sensors Actuators B Chem 223:566–575

    Article  CAS  Google Scholar 

  7. Abdel Aziz AA, Seda SH (2014) Detection of trace amounts of Hg2+in different real samples based onimmobilization of novel unsymmetrical tetradentate Schiff basewithin PVC membrane.Sensors Actuators B Chem 197: 155–163

  8. Sen S, Mukherjee T, Chattopadhyay B, Moirangthem A, Basu A, Marek J, Chattopadhyay P (2012) A water soluble Al3+ selective colorimetric and fluorescent turn-on chemosensor and its application in living cell imaging. Analyst 137(17):3975–3981

    Article  CAS  PubMed  Google Scholar 

  9. Bandini E, Grattan KTV, Tseung ACC (1995) Impregnation of a pH-sensitive dye into sol-gels for fiber optic chemical sensors. Analyst 120(4):1025–1028

    Article  Google Scholar 

  10. Mahendra M, Gangaiya P, Sotheeswaran S, Narayanaswamy R (2002) Investigation of a Cu (II) fiber optic chemical sensor using fast sulphon clack F (FSBF) immobilized onto XAD-7. Sensors Actuators B Chem 81(2–3):196–201

    Article  CAS  Google Scholar 

  11. Newcombe DT, Cardwell TJ, Cattrall RW, Kolev SD (1999) An optical redox chemical sensor based on ferroinimmobilised in a Nafion® membrane. Anal Chim Acta 401(1–2): 137–144

  12. Oehme I, Prattes S, Wolfbies OS, Mohr GJ (1998) The effect of polymeric supports and methods of immobilization on the performance of an optical copper(II)-sensitive membrane based on the colorimetric reagent Zincon. Talanta 47(3):595–604

    Article  CAS  PubMed  Google Scholar 

  13. Murkovic I, Oehme I, Mohr GJ, Ferber T, Wolfbeis OS (1995) Optode membrane for continuous measurement of silver ions. Mikrochim Acta 121(1):249–258

    Article  CAS  Google Scholar 

  14. Sadeghi S, Doosti S (2008) Novel PVC membrane bulk optical sensor for determination of uranyl ion. Sensors Actuators B Chem 135(1):139–144

    Article  CAS  Google Scholar 

  15. Zare-Shahabadi V, Akhond M, Tashkhourian J, Abbasitabar F (2009) Characterization of a new uranyl selective bulk optode; utilizing synergistic effect in optical sensor. Sensors Actuators B Chem 141(1):34–39

    Article  CAS  Google Scholar 

  16. Aksuner N, Henden E, Yilma I, Cukurovali A (2008) Selective optical sensing of copper(II) ions based on a novel cyclobutane-substituted Schiff base ligand embedded in polymer films.Sensors. Actuators B Chem 134(2):510–515

    Article  CAS  Google Scholar 

  17. Amini MK, Khezri B, Firooz AR (2008) Development of a highly sensitive and selective optical chemical sensor for batch and flow-through determination of mercury ion. Sensors Actuators B Chem 131(2):470–478

    Article  CAS  Google Scholar 

  18. Bhagat PR, Pandey AK, Acharya R, Nair AGC, Rajurkar NS, Reddy AVR (2008) Molecular iodine preconcentration and determination in aqueous samples using poly(vinylpyrrolidone) containing membranes. Talanta 74(5):1313–1320

    Article  CAS  PubMed  Google Scholar 

  19. Barcelo J, Poschenrieder C (2002) Phytoremediation: principles and perspectives. Environ Exp Bot 48(1):75–92

    Article  CAS  Google Scholar 

  20. Verstraeten SV, Aimo L, Oteiza PI (2008) Aluminium and lead: molecular mechanisms of brain toxicity. Arch Toxicol 82(11):789–802

    Article  CAS  PubMed  Google Scholar 

  21. Gupta VK, Jain AK, Maheshwari G (2007) Aluminum(III) selective potentiometric sensor based on morin in poly(vinyl chloride) matrix. Talanta 72(4):1469–1473

    Article  CAS  PubMed  Google Scholar 

  22. Arduini M, Felluga F, Mancin F, Rossi P, Tecilla P, Tonellato U, Valentinuzzi N (2003) Aluminium fluorescence detection with a FRET amplified chemosensor. Chem Commun 13:1606–1607

    Article  Google Scholar 

  23. Jung JY, Han SJ, Chun J, Lee C, Yoon J (2012) New thiazolothiazole derivatives as fluorescent chemosensors for Cr3+ and Al3+. Dyes Pigments 94(3):423–426

    Article  CAS  Google Scholar 

  24. Skoog DA, West DM (1996) Fundamental of analytical chemistry: international Edition, 7th Edition (1996). Saunders College Publishing, Philadelphia, Holt, London

    Google Scholar 

  25. Khalil MMH, Aboaly MM, Ramadan RM (2005) Spectroscopic and electrochemical studies of ruthenium and osmium complexes of salicylideneimine-2-thiophenol Schiff base. Spectrochim Acta A 61:157–161

    Article  CAS  Google Scholar 

  26. Bakker E, Simon W (1992) Selectivity of ion sensitive bulk optodes. Anal Chem 64(17):1805–1812

    Article  CAS  Google Scholar 

  27. Seiler K, Simon W (1992) Theoretical aspects of bulk optode membranes. Anal Chim Acta 266:73–87

    Article  CAS  Google Scholar 

  28. Williams ART, Winfield SA, Miller JN (1983) Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 108(1290):1067–1671

    Article  CAS  Google Scholar 

  29. Demas JN, Crosby GA (1971) The measurement of photoluminescence quantum yields. A review J PhysChem 75(8):991–1024

    Google Scholar 

  30. Yang X, Kumar N, Chi H, Hibert DB, Alexander PW (1997) Lead selective membrane electrodes based on dithiophenediazacrown ether derivatives. Electroanalysis 9(7):549–553

    Article  CAS  Google Scholar 

  31. Bakker E, Buhlmann P, Pretsch P (1997) Carrier based ions elective Electrodes and bulk optodes. 1. General characteristics. Chem Rev 97(8):3083–3132

  32. Hosseini M, Vaezi Z, Ganjali MR, Faridbod F, Abkenar SD, Alizadeh K, Salavati-Niasari M (2010) Fluorescence “turn-on” chemosensor for the selective detec-tion of zinc ion based on Schiff-base derivative. Spectrochim Acta A 75(3):978–982

    Article  Google Scholar 

  33. Shamsipur M, Sadeghi M, Alizadeh K, Sharghi H, Khalifeh R (2008) An efficient and selective flourescentoptode membrane based on 7-[(5-chloro-8-hydroxy-7-quinolinyl)methyl]-5,6,7,8,9,10-hexahydro-2H-1,13,4,7,10-benzodioxatriazacyclopentadecine-3,11(4H,12H)-dione as a novel fluoroionophore for determination of cobalt(II) ions. Anal Chim Acta 630(1):57–66

  34. Aboaly MM, Khalil MMH (2001) Synthesis and spectrosccopic study of Cu(II), Ni(II) and Co(II) complexes of the ligand Salicylidene-2-aminothiophenol. Spectrosc Lett 34(4):495–504

    Article  CAS  Google Scholar 

  35. Dziembowska T, Jagodzińska E, Rozwadowski Z, Kotfica M (2001) Solvent effect on intramolecular proton transfer equilibrium in some N-(R-salicylidene)-alkylamines. J Mol Struct 598(2–3):229–234

  36. Sandstrom J (1982) Dynamic NMR Spectroscopy. Academic Press, New York

    Google Scholar 

  37. Ali OAM, El-Medani SM, Abu Serea MR, Sayed ASS (2015) Unsymmetrical Schiff base (ON) ligand on complexation with some transition metal ions: Synthesis, spectral characterization, antibacterial, fluorescence and thermal studies. Spectrochim Acta A 136:651–660

    Article  CAS  Google Scholar 

  38. Maity D, Govindaraju T (2010) Conformationally constrained (coumarin-triazolylbipyridyl) click fluoroionophore as a selective Al(III) sensor. Inorg Chem 49(16):7229–7231

    Article  CAS  PubMed  Google Scholar 

  39. Lee J, Kim H, Kim S, Noh JY, Song EJ, Kim C, Kim J (2013) Fluorescent dye containing phenol-pyridyl for selective detection of aluminum Ions. Dyes Pigments 96(2):590–594

    Article  CAS  Google Scholar 

  40. Harvey D (2000) Modern analytical chemistry. McGraw-Hill Higher Education, New York

    Google Scholar 

  41. Luri J (1975) Handdbook of analytical chemistry. Mir, Moscow

    Google Scholar 

  42. Sahana A, Banerjee A, Das S, Lohar S, Karak D, Sarkar B, Mukhopadhyay SK, Mukherjee A.K, Das D (2011) A naphthalene based Al3+ selective fluorescent sensor for living cell imaging. Org Biomol Chem 9(15): 5523–5529

  43. Park HM, Oh BN, Kim JH, Qiong W, Hwang IH, Jung KD (2011) Fluorescent chemosensor based-on naphthol-quinoline for selective detection of aluminum ions. Tetrahedron Lett 52(43):5581–5584

    Article  CAS  Google Scholar 

  44. Banerjee A, Sahana A, Das S, Lohar S, Guha S, Sarkar B, Mukhopadhyay SK, Mukherjee AK, Das D (2012) A naphthalene exciplex based Al3+ selective on-type fluorescent probe for living cells at the physiological pH range: experimental and computational studies. Analyst 137(9): 2166–2175

  45. Noh JY, Kim S, Hwang IH, Lee GY, Kang J, Kim SH, Min J, Park S, Kim C, Kim J (2013) Solvent-dependent selective fluorescence assay of aluminum and gallium ions using julolidine-based probe. Dyes Pigments 99(3):1016–1021

    Article  CAS  Google Scholar 

  46. Helal A, Kim SH, Kim H (2013) A highly selective fluorescent turn-on probe for Al3+ via Al3+ promoted hydrolysis of ester. Tetrahedron 69(30):6095–6099

    Article  CAS  Google Scholar 

  47. Guo Y-Y, Yang L-Z, Ru J-X, Yao X, Wu J, Dou W, Qin W-W, Zhang G-L, Tang X-L, Liu W-S (2013) An “OFF–ON” fluorescent chemosensor for highly selective and sensitive detection of Al (III) in aqueous solution. Dyes Pigments 99(3):693–698

    Article  CAS  Google Scholar 

  48. Malkondu S (2014) A highly selective and sensitive perylenebisimide-based fluorescent PET sensor for Al3+determination in MeCN. Tetrahedron 70(35):5580–5584

    Article  CAS  Google Scholar 

  49. Fan L, Jiang X, Wang B, Yang Z (2014) 4-(8/−Hydroxyquinolin-7/−yl)methyleneimino-1-phenyl-2,3-dimethyl-5-pyzole as a fluorescent chemosensor for aluminum ion inacid aqueous medium. Sens Actuators B 205:249–254

    Article  CAS  Google Scholar 

  50. Gupta VK, Singh AK, Kumawat LK (2014) Thiazole Schiff base turn-on fluorescent chemosensor for Al3+ ion. Sensors Actuators B Chem 195:98–108

    Article  CAS  Google Scholar 

  51. He L, So VLL, JH X (2014) A new rhodamine-thiourea/Al3+ complex sensor for the fast visualdetection of arginine in aqueous media. A new rhodamine-thiourea/Al3+ complex sensor for the fast visualdetection of arginine in aqueous media. Sensors Actuators B Chem 192:496–502

    Article  CAS  Google Scholar 

  52. Tang J-L, Li C-Y, Li Y-F, Lu X, Qi H-R (2014) A reversible switch as highly selective sequential chemosensor for Al3+ cation followed by F anion. Sensors Actuators B Chem 192:164–172

    Article  Google Scholar 

  53. Cao L, Jia C, Huang Y, Zhang Q, Wang N, Xue Y, Du D (2014) A highly selective fluorescence turn-on detection of Al3+ and Ca2+ based on a coumarin-modified rhodamine derivative. Tetrahedron Lett 55:4062–4066

    Article  CAS  Google Scholar 

  54. Liu S, Zhang L, Zan W, Yao X, Yang Y, Liu X (2014) A novel HBT-based Schiff base for colorimetric detection of aluminum: Synthesis, characterization, spectral and DFT computational studies. Sensors Actuators B Chem 192:386–392

    Article  CAS  Google Scholar 

  55. Li Z, Hu Q, Li C, Dou J, Cao J, Chen W, Zhu Q (2014) A ‘turn-on’ fluorescent chemosensor based on rhodamine-N-(3-aminopropyl)-imidazole for detection of Al3+ ions. Tetrahedron Lett 55:1258–1262

    Article  CAS  Google Scholar 

  56. Tang J-L, Li C-Y, Li Y-F, Lu X, Qi H-R (2015) A highly sensitive and selective fluorescent probe for trivalent aluminum ion based on rhodamine derivative in living cells. Anal Chim Acta 888:155–161

    Article  CAS  PubMed  Google Scholar 

  57. Wang H, Wang B, Shi Z, Tang X, Dou W, Han QN, Zhang Y, Liu W (2015) A two-photon probe for Al3+ in aqueous solution and its application in bioimaging. Biosens Bioelectron 65:91–96

    Article  PubMed  Google Scholar 

  58. Zhao J, Zhao Y, Xu S, Luo N, Tang R (2015) A selective fluorescent probe for relay recognition of Al3+ and Cu2+ through fluorescence “off-on-off” functionality. Inorg Chim Acta 438:105–111

    Article  CAS  Google Scholar 

  59. Yu F, Hou LJ, Qin LY, Chao JB, Wang Y, Jin WJ (2016) A new colorimetric and turn-on fluorescent chemosensor for Al3+ in aqueous medium and its application in live-cell imaging. J Photoch Photobio A 315:8–13

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir M. El-Medani.

Electronic Supplementary Material

ESM 1

(DOCX 773 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel Aziz, A.A., Mohamed, R.G., Elantabli, F.M. et al. A Novel Fluorimetric Bulk Optode Membrane Based on NOS Tridentate Schiff Base for Selective Optical Sensing of Al3+ Ions. J Fluoresc 26, 1927–1938 (2016). https://doi.org/10.1007/s10895-016-1881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1881-5

Keywords

Navigation