Skip to main content
Log in

Condensation Product of Phenylalanine and Salicylaldehyde: Fluorescent Sensor for Zn2+

  • ORIGINAL ARTICLE
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The condensation product of phenylalanine and salicylaldehyde (L) was synthesised and characterised which was found to be selective fluorescent “off-on” sensor for Zn2+ ion with the detection limit 10−5 M. The sensor is free of interferences from metal ions - Na+, K+, Al3+, Mn2+, Co2+, Ni2+, Cu2+, Pb2+, Cd2+ and Hg2+. The Fluorescence and the UV/visible spectral data reveals a 1:1 interaction between the sensor and Zn2+ ion with binding constant 108. The DFT and TDDFT calculations confirm the structures of the sensor and the sensor-Zn2+ complex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lipscomb WN, Strater N (1996) Recent advances in zinc enzymology. Chem Rev 96:2375–2433

    Article  CAS  PubMed  Google Scholar 

  2. Frederickson CJ, Koh JY, Bush AI (2005) The neurobiology of zinc in health and disease. Nat Rev Neurosci 6:449–462

    Article  CAS  PubMed  Google Scholar 

  3. Burdette SC, Lippard SJ (2003) Meeting of the minds: Metalloneurochemistry. Proc Natl Acad Sci U S A 100:3605–3610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the roles of zinc. Science 271:1081–1085

    Article  CAS  PubMed  Google Scholar 

  5. O’Halloran TV (1993) Transition metals in control of gene expression. Science 261:715–725

    Article  PubMed  Google Scholar 

  6. Outten CE, Tobin DA, Penner-Hahn JE, O’Halloran TV (2001) Characterization of the metal receptor sites in Escherichia coli zur, an ultrasensitive zinc (ll) metalloregulatory protein. Biochemistry 40:10417–10423

    Article  CAS  PubMed  Google Scholar 

  7. Finney LA, O’Halloran TV (2003) Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931–936

    Article  CAS  PubMed  Google Scholar 

  8. Outten CE, O’Halloran TV (2001) Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:2488–2492

    Article  CAS  PubMed  Google Scholar 

  9. Cuajungco MP, Lees GJ (1997) Zinc metabolism in the brain :relevance to human neurodegenerative disorders. Neurobiol Dis 4:137–169

    Article  CAS  PubMed  Google Scholar 

  10. Bush AI, Pettingell WH, Multhaup G, d Paradis M, Vonsattel JP, Gusella JF, Beyreuther K, Masters CL, Tanzi RE (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science 265:1464–1467

    Article  CAS  PubMed  Google Scholar 

  11. Koh JY, Suh SW, Gwag BJ, He YY, Hsu CY, Choi DW (1996) The role of zinc in selective neuronal death after transient global cerebral ischemia. Science 272:1013–1016

    Article  CAS  PubMed  Google Scholar 

  12. Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD (2001) The role of zinc in caspase activation and apoptotic cell death. Biometals 14:315–330

    Article  CAS  PubMed  Google Scholar 

  13. Zalewski PD, Forbes IJ, Seamark RF, Borlinghaus R, Betts WH, Lincoln SF, Ward AD (1994) Flux of intracellular labile zinc during apoptosis (gene directed cell death) revealed by a specific chemical probe zinquin. Chem Biol 1:153–161

    Article  CAS  PubMed  Google Scholar 

  14. Kimura E, Aoki S, Kikuta E, Koike T (2003) A macrocyclic zinc(ll) fluorophore as a detector of apoptosis. Proc Natl Acad Sci U S A 100:3731–3736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Xu Z, Yoon J, Spring DR (2010) Fluorescent chemosensors for zinc ions. Chem Soc Rev 39:1996–2006

    Article  CAS  PubMed  Google Scholar 

  16. Carol P, Sreejith S, Ajayaghosh A (2007) Ratiometric and near–infrared molecular probes for the detection and imaging of zinc ions. Chem Asian J 2(3):338–348

    Article  CAS  PubMed  Google Scholar 

  17. Domaille DW, Que EL, Chang CJ (2008) Synthetic fluorescent sensors for studying the cell biology of metals. Nat Chem Biol 4:168–175

    Article  CAS  PubMed  Google Scholar 

  18. Dai Z, Canary JW (2007) Tailoring tripodal ligands for zinc sensing. New J Chem 31:1708–1718

    Article  CAS  Google Scholar 

  19. Jiang P, Guo Z (2004) Fluorescence detection of zinc in biological systems:recent development on the design of chemsensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  20. Tomat E, Lippard SJ (2010) Imaging mobile zinc in Biology. Curr Opin Chem Biol 14:225–230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Linert W, Jameson GNL, Jameson RF, Jellinger KA (2006) The chemical interplay between catecholamine and metal ions in neurological diseases. Met Ions Life Sci 1:281–320

    CAS  Google Scholar 

  22. Kimura E, Koike T (1998) Recent development of zinc fluorophores. Chem Soc Rev 27:179–184

    Article  CAS  Google Scholar 

  23. Sarma S, Bhattacharyya PK, Das DK (2015) A new fluorescent “off-on” sensor for Al3+ derived from L-alanine and salicylaldehyde. J Fluoresc 25:1537–1542

    Article  CAS  PubMed  Google Scholar 

  24. Mikata Y, Sato Y, Takeuchi S, Kuroda Y, Konno H, Iwatsuki S (2013) Quinoline based fluorescent zinc sensors with enhanced fluorescence intensity, Zn/Cd selectivity and metal binding affinity by conformational restrictions. Dalton Trans 42(26):9688–9698

    Article  CAS  PubMed  Google Scholar 

  25. Pradhan AB, Mandal SK, Banerjee S, Mukherjee A, Das S, Khuda BAR, Saha A (2015) A highly selective fluorescent sensor for zinc ion based on uinolone platform with potential applications for cell imaging studies. Polyhedron 94:75–82

    Article  CAS  Google Scholar 

  26. Mikata Y, Kawata K, Takeuchi S, Nakanishi K, Konno H, Itami S, Yasuda K, Tamotsu S, Burdette Shawn C (2014) Iso-quinoline derivatized tris (2-pyridyl methyl)-amines as fluorescent zinc sensors with strict Zn2+/Cd2+selectivity. Dalton Trans 43:10751–10759

    Article  CAS  PubMed  Google Scholar 

  27. Mati SS, Chall S, Konar S, Rakshit S, Bhattacharya SC (2014) Pyrimidine based fluorescent zinc sensors: photophysical characteristics, quantum chemical interpretation and application in real samples. Sens Actuat B 201:204–212

    Article  CAS  Google Scholar 

  28. Roger M, Regueiro-Figueroa M, Ben A, Chams PV, Bonnet CS, Platas-Iglesias C, Tripier R (2014) Lanthanide complexes with heteroditopic ligands as fluorescent zinc sensors. Eur J Inorg Chem 6:1072–1081

    Article  Google Scholar 

  29. Mikata Y, Nodomi Y, Kizu A, Konno H (2014) Quinoline attached triazacyclonone (TACN) derivatives as fluorescent zinc sensor. Dalton Trans 43:1684–1690

    Article  CAS  PubMed  Google Scholar 

  30. Zhang C, Liu Z, Li Y, He W, Gao X, Guo Z (2013) In vitro and in vivo imaging application of a 1,8-napthalimide derived Zn2+ fluorescent sensor with nuclear envelope penetrability. Chem Commun 49:11430–11432

    Article  CAS  Google Scholar 

  31. Goswami S, Das AK, Aich K, Manna A, Maity S, Khanra K, Bhattacharyya N (2013) Ratiometric and absolute water soluble fluorescent tripodal zinc sensor and its application in killing human lung cancer cells. Analyst 138:4593–4598

    Article  CAS  PubMed  Google Scholar 

  32. Shortreed M, Kopelman R, Kuhn M, Hoyland B (1996) Fluorescent fiber-optic calcium sensor for physiological measurements. Anal Chem 68:1414–1418

    Article  CAS  PubMed  Google Scholar 

  33. Pal P, Rastogi SK, Gibson CM, Aston DE, Branen AL, Bitterwolf TE (2011) Fluorescence sensing of zinc(ll)using ordered mesoporous silica material (MCM-41)functionalized with N-(quinolin-8-yl)-2-[3-(triethoxysilyl)propylamino]acetamide. ACS Appl Mater Interfaces 3(2):279–286

    Article  CAS  PubMed  Google Scholar 

  34. Kwon JE, Lee S, You Y, Baek KH, Ohkubo K, Cho J, Fukuzumi S, Shin I, Park SY, Nam WW (2012) Fluorescent Zinc sensor with minimized proton-induced Interferences: photophysical mechanism for fluorescence Turn-On response and detection of endogenous free zinc ions. Inorg Chem 51:8760–8774

    Article  CAS  PubMed  Google Scholar 

  35. Lin HY, Cheng PY, Wanb CF, Wu AT (2012) A turn-on and reversible fluorescence sensor for zinc ion. Analyst 137:4415

    Article  CAS  PubMed  Google Scholar 

  36. Chyan W, Zhang DY, Lippard SJ, Radford RJ (2014) Reaction-based fluorescent sensor for investigating mobile Zn2+ in mitochondria of healthy versus cancerous prostate cells. PNAS 111:143–148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koch W, Holthausen MC (2000) A chemist’s guide to density functional theory. Willey-VCH, Weinheim

    Google Scholar 

  38. Casida ME (1995) Recent advances in density-functional methods; World Scientific: Singapore. Vol. 3 of Part I

  39. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  40. Baerends EJ, Gritsenko OV (1997) A quantum chemical view of density functional theory. J Phys Chem A 101:5383–5403

    Article  CAS  Google Scholar 

  41. Chermette IH (1998) Density functional theory: a powerful tool for theoretical studies in coordination chemistry, Coord. Chem Rev 178:699–721

    Google Scholar 

  42. Neese F (2009) Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling. Coord Chem Rev 253:526–563

    Article  CAS  Google Scholar 

  43. Marques MAL, Nogueira FMS, Gross EKU, Rubio A (2012) Fundamentals of time-dependent density functional theory, ed. Springer, Heidelberg

    Book  Google Scholar 

  44. Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  45. Parac M, Grimme S (2003) A TDDFT study of the lowest excitation energies of polycyclic aromatic hydrocarbons. Chem Phys 292:11–21

    Article  CAS  Google Scholar 

  46. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Article  CAS  PubMed  Google Scholar 

  47. Mc Lean AD, Chandler GS (1980) Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z = 11–18. J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  48. Raghavachari K, Binkley JS, Seeger R, Pople JA (1980) Self-consistent molecular orbital methods. A basis set for correlated wave functions. J Chem Phys 72:650

    Article  Google Scholar 

  49. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  50. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  51. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454

    Article  CAS  Google Scholar 

  52. Casida ME, Jamorski C, Casida KC, Salahub DR (1998) Molecular excitation energies to high-lying bound states from time-dependent density-functional response theory: characterization and correction of the time-dependent local density approximation ionization threshold. J Chem Phys 108:4439–4449

    Article  CAS  Google Scholar 

  53. Frisch et al (2010) Gaussian 09, Revision B.01. Gaussian, Inc., Wallingford CT

  54. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Account 120:215–241

    Article  CAS  Google Scholar 

  55. Orozco M, Luque FJ (2000) Theoretical methods for the description of the solvent effect in biomolecular systems. Chem Rev 100:4187

    Article  CAS  PubMed  Google Scholar 

  56. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

DST, New Delhi and UGC, New Delhi are thanked for financial support to the department through FIST-II and SAP respectively. SS thanks UGC for fellowship under BSR scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarma, S., Bhattacharyya, P.K. & Das, D.K. Condensation Product of Phenylalanine and Salicylaldehyde: Fluorescent Sensor for Zn2+ . J Fluoresc 26, 899–904 (2016). https://doi.org/10.1007/s10895-016-1778-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-016-1778-3

Keywords

Navigation