Skip to main content
Log in

Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Brain spectrin enjoys overall structural and sequence similarity with erythroid spectrin, but less is known about its function. We utilized the fluorescence properties of tryptophan residues to monitor their organization and dynamics in brain spectrin. Keeping in mind the functional relevance of hydrophobic binding sites in brain spectrin, we monitored the organization and dynamics of brain spectrin bound to PRODAN. Results from red edge excitation shift (REES) indicate that the organization of tryptophans in brain spectrin is maintained to a considerable extent even after denaturation. These results are supported by acrylamide quenching experiments. To the best of our knowledge, these results constitute the first report of the presence of residual structure in urea-denatured brain spectrin. We further show from REES and time-resolved emission spectra that PRODAN bound to brain spectrin is characterized by motional restriction. These results provide useful information on the differences between erythroid spectrin and brain spectrin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. We have used the term maximum of fluorescence emission in a somewhat broader sense here. In every case, we have monitored the wavelength corresponding to maximum fluorescence intensity, as well as the center of mass of the fluorescence emission, in the symmetric part of the spectrum. In most cases, both these methods yielded the same wavelength. In cases where minor discrepancies were found, the center of mass of emission has been reported as the fluorescence maximum.

References

  1. Bennett V, Gilligan DM (1993) The spectrin-based membrane skeleton and micron-scale organization of the plasma membrane. Annu Rev Cell Biol 9:27–66

    Article  CAS  PubMed  Google Scholar 

  2. Winkelmann JC, Forget BG (1993) Eythroid and nonerythroid spectrins. Blood 81:3173–3185

    CAS  PubMed  Google Scholar 

  3. Chakrabarti A, Kelkar DA, Chattopadhyay A (2006) Spectrin organization and dynamics: new insights. Biosci Rep 26:369–386

    Article  CAS  PubMed  Google Scholar 

  4. Bennett V, Baines AJ (2001) Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Physiol Rev 81:1353–1392

    CAS  PubMed  Google Scholar 

  5. Williamson P, Bateman J, Kozarsky K, Mattocks K, Hermanowicz N, Choe H-R, Schlegel RA (1982) Involvement of spectrin in the maintenance of phase-state asymmetry in the erythrocyte membrane. Cell 30:725–733

    Article  CAS  PubMed  Google Scholar 

  6. Bhattacharyya M, Ray S, Bhattacharya S, Chakrabarti A (2004) Chaperone activity and prodan binding at the self-associating domain of erythroid spectrin. J Biol Chem 279:55080–55088

    Article  CAS  PubMed  Google Scholar 

  7. Pascual J, Pfuhl M, Walther D, Saraste M, Nilges M (1997) Solution structure of the spectrin repeat: a left-handed antiparallel triple-helical coiled-coil. J Mol Biol 273:740–751

    Article  CAS  PubMed  Google Scholar 

  8. Viel A (1999) α-Actinin and spectrin structures: an unfolding family story. FEBS Lett 460:391–394

    Article  CAS  PubMed  Google Scholar 

  9. Sahr KE, Laurila P, Kotula L et al (1990) The complete cDNA and polypeptide sequences of human erythroid α-spectrin. J Biol Chem 265:4434–4443

    CAS  PubMed  Google Scholar 

  10. Winkelmann JC, Chang J-G, Tse WT, Scarpa AL, Marchesi VT, Forget BG (1990) Full-length sequence of the cDNA for human erythroid β-spectrin. J Biol Chem 265:11827–11832

    CAS  PubMed  Google Scholar 

  11. MacDonald RI, Musacchio A, Holmgren RA, Saraste M (1994) Invariant tryptophan at a shielded site promotes folding of the conformational unit of spectrin. Proc Natl Acad Sci U S A 91:1299–1303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Subbarao NK, MacDonald RC (1994) Fluorescence studies of spectrin and its subunits. Cell Motil Cytoskeleton 29:72–81

    Article  CAS  PubMed  Google Scholar 

  13. Pantazatos DP, MacDonald RI (1997) Site-directed mutagenesis of either the highly conserved Trp-22 or the moderately conserved Trp-95 to a large, hydrophobic residue reduces the thermodynamic stability of a spectrin repeating unit. J Biol Chem 272:21052–21059

    Article  CAS  PubMed  Google Scholar 

  14. Chattopadhyay A, Rawat SS, Kelkar DA, Ray S, Chakrabarti A (2003) Organization and dynamics of tryptophan residues in erythroid spectrin: novel structural features of denatured spectrin revealed by the wavelength-selective fluorescence approach. Protein Sci 12:2389–2403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Kelkar DA, Chattopadhyay A, Chakrabarti A, Bhattacharyya M (2005) Effect of ionic strength on the organization and dynamics of tryptophan residues in erythroid spectrin: a fluorescence approach. Biopolymers 77:325–334

    Article  CAS  PubMed  Google Scholar 

  16. Ray S, Chakrabarti A (2003) Erythroid spectrin in miceller detergents. Cell Motil Cytoskeleton 54:16–28

    Article  CAS  PubMed  Google Scholar 

  17. Sikorski AF, Michalak K, Bobrowska M (1987) Interaction of spectrin with phospholipids. Quenching of spectrin intrinsic fluorescence by phospholipid suspensions. Biochim Biophys Acta 904:55–60

    Article  CAS  PubMed  Google Scholar 

  18. Kahana E, Pinder JC, Smith KS, Gratzer WB (1992) Fluorescence quenching of spectrin and other red cell membrane cytoskeletal proteins. Relation to hydrophobic binding sites. Biochem J 282:75–80

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Weber G, Farris FJ (1979) Synthesis and spectral properties of a hydrophobic fluorescent probe: 6-propionyl-2-(dimethylamino)naphthalene. Biochemistry 18:3075–3078

    Article  CAS  PubMed  Google Scholar 

  20. Chakrabarti A (1996) Fluorescence of spectrin-bound prodan. Biochem Biophys Res Commun 226:495–497

    Article  CAS  PubMed  Google Scholar 

  21. Patra M, Mitra M, Chakrabarti A, Mukhopadhyay C (2014) Binding of polarity- sensitive hydrophobic ligands to erythroid and nonerythroid spectrin: fluorescence and molecular modeling studies. J Biomol Struct Dyn 32:852–865

    Article  CAS  PubMed  Google Scholar 

  22. Leto TL, Fortugno-Erikson D, Barton D et al (1988) Comparison of nonerythroid α-spectrin genes reveals strict homology among diverse species. Mol Cell Biol 8:1–9

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Voas MG, Lyons DA, Naylor SG, Arana N, Rasband MN, Talbot WS (2007) αII-Spectrin is essential for assembly of the nodes of Ranvier in myelinated axons. Curr Biol 17:562–568

    Article  CAS  PubMed  Google Scholar 

  24. Diakowski W, Sikorski AF (1995) Interaction of brain spectrin (fodrin) with phospholipids. Biochemistry 34:13252–13258

    Article  CAS  PubMed  Google Scholar 

  25. Diakowski W, Sikorski AF (2002) Brain spectrin exerts much stronger effect on anionic phospholipid monolayers than erythroid spectrin. Biochim Biophys Acta 1564:403–411

    Article  CAS  PubMed  Google Scholar 

  26. Li Q, Fung LW-M (2009) Structural and dynamic study of the tetramerization region of non-erythroid α-spectrin: a frayed helix revealed by site-directed spin labeling EPR. Biochemistry 48:206–215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Mehboob S, Jacob J, May M, Kotula L, Thiyagarajan P, Johnson ME, Fung LW-M (2003) Structural analysis of the αN-terminal region of erythroid and nonerythroid spectrin by small-angle X-ray scattering. Biochemistry 42:14702–14710

    Article  CAS  PubMed  Google Scholar 

  28. Mehboob S, Song Y, Witek M, Long F, Santarsiero BD, Johnson ME, Fung LW-M (2010) Crystal structure of the nonerythroid α-spectrin tetramerization site reveals differences between erythroid and nonerythroid spectrin tetramer formation. J Biol Chem 285:14572–14584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Song Y, Antoniou C, Memic A, Kay BK, Fung LW-M (2011) Apparent structural differences at the tetramerization region of erythroid and nonerythroid beta spectrin as discriminated by phage displayed scFvs. Protein Sci 20:867–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Begg GE, Morris MB, Ralston GB (1997) Comparison of the salt-dependent self-association of brain and erythroid spectrin. Biochemistry 36:6977–6985

    Article  CAS  PubMed  Google Scholar 

  31. An X, Zhang X, Salomao M, Guo X, Yang Y, Wu Y, Gratzer W, Baines AJ, Mohandas N (2006) Thermal stabilities of brain spectrin and the constituent repeats of subunits. Biochemistry 45:13670–13676

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Eftink MR (1991) Fluorescence quenching reactions: probing biological macromolecular structure. In: Dewey TG (ed) Biophysical and biochemical aspects of fluorescence spectroscopy. Plenum Press, New York, pp 1–41

    Chapter  Google Scholar 

  33. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  34. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Book  Google Scholar 

  35. Lehrer SS (1971) Solute perturbation of protein fluorescence. The quenching of the tryptophyl fluorescence of model compounds and of lysozyme by iodide ion. Biochemistry 10:3254–3263

    Article  CAS  PubMed  Google Scholar 

  36. Haldar S, Raghuraman H, Chattopadhyay A (2008) Monitoring orientation and dynamics of membrane-bound melittin utilizing dansyl fluorescence. J Phys Chem B 112:14075–14082

    Article  CAS  PubMed  Google Scholar 

  37. Eftink MR (1991) Fluorescence techniques for studying protein structure. Methods Biochem Anal 35:127–205

    Article  CAS  PubMed  Google Scholar 

  38. Burns NR, Ohanian V, Gratzer WB (1983) Properties of brain spectrin (fodrin). FEBS Lett 153:165–168

    Article  CAS  PubMed  Google Scholar 

  39. Mukherjee S, Chattopadhyay A (1995) Wavelength-selective fluorescence as a novel tool to study organization and dynamics in complex biological systems. J Fluoresc 5:237–246

    Article  CAS  PubMed  Google Scholar 

  40. Chattopadhyay A (2003) Exploring membrane organization and dynamics by the wavelength-selective fluorescence approach. Chem Phys Lipids 122:3–17

    Article  CAS  PubMed  Google Scholar 

  41. Raghuraman H, Kelkar DA, Chattopadhyay A (2005) Novel insights into protein structure and dynamics utilizing the red edge excitation shift approach. In: Geddes CD, Lakowicz JR (eds) Reviews in Fluorescence 2005, vol 2. Springer, New York, pp 199–222

    Chapter  Google Scholar 

  42. Demchenko AP (2008) Site-selective red-edge effects. Methods Enzymol 450:59–78

    Article  CAS  PubMed  Google Scholar 

  43. Haldar S, Chaudhuri A, Chattopadhyay A (2011) Organization and dynamics of membrane probes and proteins utilizing the red edge excitation shift. J Phys Chem B 115:5693–5706

    Article  CAS  PubMed  Google Scholar 

  44. Chattopadhyay A, Haldar S (2014) Dynamic insight into protein structure utilizing red edge excitation shift. Acc Chem Res 47:12–19

    Article  CAS  PubMed  Google Scholar 

  45. Rawat SS, Kelkar DA, Chattopadhyay A (2004) Monitoring gramicidin conformations in membranes: a fluorescence approach. Biophys J 87:831–843

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Raghuraman H, Chattopadhyay A (2003) Organization and dynamics of melittin in environments of graded hydration: a fluorescence approach. Langmuir 19:10332–10341

    Article  CAS  Google Scholar 

  47. Rawat SS, Mukherjee S, Chattopadhyay A (1997) Micellar organization and dynamics: a wavelength-selective fluorescence approach. J Phys Chem B 101:1922–1929

    Article  CAS  Google Scholar 

  48. Rawat SS, Chattopadhyay A (1999) Structural transition in the micellar assembly: a fluorescence study. J Fluoresc 9:233–244

    Article  CAS  Google Scholar 

  49. Raghuraman H, Pradhan SK, Chattopadhyay A (2004) Effect of urea on the organization and dynamics of triton X-100 micelles: a fluorescence approach. J Phys Chem B 108:2489–2496

    Article  CAS  Google Scholar 

  50. Kelkar DA, Chattopadhyay A (2004) Depth-dependent solvent relaxation in reverse micelles: a fluorescence approach. J Phys Chem B 108:12151–12158

    Article  CAS  Google Scholar 

  51. Ghosh AK, Rukmini R, Chattopadhyay A (1997) Modulation of tryptophan environment in membrane-bound melittin by negatively charged phospholipids: implications in membrane organization and function. Biochemistry 36:14291–14305

    Article  CAS  PubMed  Google Scholar 

  52. Jain N, Bhasne K, Hemaswasthi M, Mukhopadhyay S (2013) Structural and dynamical insights into the membrane-bound α-synuclein. PLoS One 8:e83752

    Article  PubMed Central  PubMed  Google Scholar 

  53. Guha S, Rawat SS, Chattopadhyay A, Bhattacharyya B (1996) Tubulin conformation and dynamics: a red edge excitation shift study. Biochemistry 35:13426–13433

    Article  CAS  PubMed  Google Scholar 

  54. Raja SM, Rawat SS, Chattopadhyay A, Lala AK (1999) Localization and environment of tryptophans in soluble and membrane-bound states of a pore-forming toxin from Staphylococcus aureus. Biophys J 76:1469–1479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Chaudhuri A, Haldar S, Chattopadhyay A (2010) Organization and dynamics of tryptophans in the molten globule state of bovine α-lactalbumin utilizing wavelength-selective fluorescence approach: comparisons with native and denatured states. Biochem Biophys Res Commun 394:1082–1086

    Article  CAS  PubMed  Google Scholar 

  56. Kelkar DA, Chaudhuri A, Haldar S, Chattopadhyay A (2010) Exploring tryptophan dynamics in acid-induced molten globule state of bovine α-lactalbumin: a wavelength-selective fluorescence approach. Eur Biophys J 39:1453–1463

    Article  CAS  PubMed  Google Scholar 

  57. Diakowski W, Prychidny A, Swistak M, Nietubyć M, Białkowska K, Szopa J, Sikorski AF (1999) Brain spectrin (fodrin) interacts with phospholipids as revealed by intrinsic fluorescence quenching and monolayer experiments. Biochem J 338:83–90

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Demchenko A (1988) Red-edge-excitation fluorescence spectroscopy of single-tryptophan proteins. Eur Biophys J 16:121–129

    Article  CAS  PubMed  Google Scholar 

  59. Weber G, Shinitzky M (1970) Failure of energy transfer between identical aromatic molecules on excitation at the long wave edge of the absorption spectrum. Proc Natl Acad Sci U S A 65:823–830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Moens PDJ, Helms MK, Jameson DM (2004) Detection of tryptophan to tryptophan energy transfer in proteins. Protein J 23:79–83

    Article  CAS  PubMed  Google Scholar 

  61. Eftink MR (1991) Fluorescence quenching: theory and applications. In: Lakowicz JR (ed) Topics in fluorescence spectroscopy, vol 2. Plenum Press, New York, pp 53–126

    Chapter  Google Scholar 

  62. Balter A, Nowak W, Pawelkiewicz W, Kowalczyk A (1988) Some remarks on the interpretation of the spectral properties of prodan. Chem Phys Lett 143:565–570

    Article  CAS  Google Scholar 

  63. Samanta A, Fessenden RW (2000) Excited state dipole moment of PRODAN as determined from transient dielectric loss measurements. J Phys Chem A 104:8972–8975

    Article  CAS  Google Scholar 

  64. Klein-Seetharaman J, Oikawa M, Grimshaw SB, Wirmer J, Duchardt E, Ueda T, Imoto T, Smith LJ, Dobson CM, Schwalbe H (2002) Long-range interactions within a nonnative protein. Science 295:1719–1722

    Article  CAS  PubMed  Google Scholar 

  65. An X, Guo X, Zhang X, Baines AJ, Debnath G, Moyo D, Salomao M, Bhasin N, Johnson C, Discher D, Gratzer WB, Mohandas N (2006) Conformational stabilities of the structural repeats of erythroid spectrin and their functional implications. J Biol Chem 281:10527–10532

    Article  CAS  PubMed  Google Scholar 

  66. Baines AJ, Keating L, Phillips GW, Scott C (2001) The postsynaptic spectrin/4.1 membrane protein “accumulation machine”. Cell Mol Biol Lett 6:691–702

    CAS  PubMed  Google Scholar 

  67. Pielage J, Fetter RD, Davis GW (2006) A postsynaptic spectrin scaffold defines active zone size, spacing, and efficacy at the Drosophila neuromuscular junction. J Cell Biol 175:491–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Patra M, Mukhopadhyay C, Chakrabarti A (2015) Probing conformational stability and dynamics of erythroid and nonerythroid spectrin: effects of urea and guanidine hydrochloride. PLoS One 10:e0116991

    Article  PubMed Central  PubMed  Google Scholar 

  69. Shortle D (1993) Denatured states of proteins and their roles in folding and stability. Curr Opin Struct Biol 3:66–74

    Article  CAS  Google Scholar 

  70. Schwalbe H, Fiebig KM, Buck M, Jones JA, Grimshaw SB, Spencer A, Glaser SJ, Smith LJ, Dobson CM (1997) Structural and dynamical properties of a denatured protein. Heteronuclear 3D NMR experiments and theoretical simulations of lysozyme in 8 M urea. Biochemistry 36:8977–8991

    Article  CAS  PubMed  Google Scholar 

  71. Shortle D, Ackerman MS (2001) Persistence of native-like topology in a denatured protein in 8 M urea. Science 293:487–489

    Article  CAS  PubMed  Google Scholar 

  72. McCarney ER, Kohn JE, Plaxco KW (2005) Is there or isn’t there? The case for (and against) residual structure in chemically denatured proteins. Crit Rev Biochem Mol Biol 40:181–189

    Article  CAS  PubMed  Google Scholar 

  73. Kräutler V, Hiller S, Hünenberger PH (2010) Residual structure in a peptide fragment of the outer membrane protein X under denaturing conditions: a molecular dynamics study. Eur Biophys J 39:1421–1432

    Article  PubMed  Google Scholar 

  74. Chiarella S, Federici L, Di Matteo A, Brunori M, Gianni S (2013) The folding pathway of a functionally competent C-terminal domain of nucleophosmin: protein stability and denatured state residual structure. Biochem Biophys Res Commun 435:64–68

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Department of Atomic Energy (IBOP project) and the Council of Scientific and Industrial Research, Govt. of India. Ar.C. thanks the Council of Scientific and Industrial Research for the award of a Senior Research Fellowship. M.P. acknowledges the award of a Senior Research Fellowship from the University Grants Commission (India). A.C. gratefully acknowledges support from J.C. Bose Fellowship (Department of Science and Technology, Govt. of India). A.C. is an Adjunct Professor of Jawaharlal Nehru University (New Delhi), Indian Institute of Science Education and Research (Mohali), Indian Institute of Technology (Kanpur) and Honorary Professor of the Jawaharlal Nehru Centre for Advanced Scientific Research (Bangalore). We thank Sourav Haldar for help with the TRES measurements, G. Aditya Kumar for help in making figures, and members of the Chattopadhyay laboratory for their comments and discussions.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that there is no conflict of interest.

Research Involving Human Participants and/or Animals

Sheep brains of freshly sacrificed animals were obtained from a local slaughterhouse for purification of brain spectrin following the guidelines of the Institutional Animal and Bioethics Committee of Saha Institute of Nuclear Physics.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Abhijit Chakrabarti or Amitabha Chattopadhyay.

Additional information

Madhurima Mitra and Arunima Chaudhuri contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, M., Chaudhuri, A., Patra, M. et al. Organization and Dynamics of Tryptophan Residues in Brain Spectrin: Novel Insight into Conformational Flexibility. J Fluoresc 25, 707–717 (2015). https://doi.org/10.1007/s10895-015-1556-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-015-1556-7

Keywords

Navigation