Skip to main content
Log in

Luminescence Properties and Optical Absorption of X ray-Irradiated KBr: Ce3+, Tb3+ Crystals

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

This paper reports that KBr doubly doped with Tb3+ and Ce3+ were prepared by Bridgman-Stockbarger method and characterized by Optical absorption, Photoluminescence (PL), Thermoluminescence (TL), Photo stimulated emission (PSL) and TL emission, after X-ray irradiation have been observed. The optical absorption measurement indicates that F and Z3 centers are formed in the crystal during X-ray irradiation process. It was attempted to incorporate a broad band of Ce3+ sensitizer into the narrow band emission of Tb3+ in the KBr host without reduction of emission intensity. Co-doping of Ce3+ ions in KBr:Tb3+ crystal showed a broad band emission due to the d-f transition of Ce3+ and a reduction in the intensity of emission peaks due to 5 days → 7 F6 transition of Tb3+ when they were excited at 250 nm. These results supported that an effective energy transfer occurs from Ce3+ to Tb3+ in the KBr host. Co-doping Ce3+ ions greatly intensified the excitation peak at 260 nm for the emission at 390 nm of Tb3+ which means that more lattice defects, involved in the energy absorption and transfer to Tb3+, are formed by the Ce3+ co-doping. The integrated light intensity is two orders of magnitude higher as compared to the undoped samples for similar doses of irradiation and heating rate. Thermoluminescence process has been identified due to thermal mobilization of F-electrons and this causes peaks at 371 K and at 427 K, 457 K in KBr: Ce3+ , Tb3+ crystals. The defects generated by irradiation were monitored by optical absorption and trap parameters for the TL process were calculated and presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hong G,Li Y,Lumin. Display Devices 5 (2) (1984) 1

  2. Blasse G (1989) Chem Mater 1:294

    Article  CAS  Google Scholar 

  3. Smets BMJ (1987) Mater Chem Phys 16:283

    Article  CAS  Google Scholar 

  4. Bangaru S, Muralidharan G (2009). J. Lumin. 129

  5. Pan Y, Wu M, Su Q (2004) J Phys Chem Solid 65:845

    Article  CAS  Google Scholar 

  6. Rambabu V, Balaji T, Annapurna K, Buddhudu S (1995) Mat Res Bull 30:891

    Article  CAS  Google Scholar 

  7. Takahashi T, Miyahara J, Shibahara Y (1988) J Electro Chem Soc 12:1492

    Google Scholar 

  8. Kao FS, Chen TM (2002) A study on the luminescent properties of new green-emitting terbium-activated CaIn2O4: xTb phosphors. J Lumin 96:261

    Article  CAS  Google Scholar 

  9. Jia D, Zhu J, Wu SEB (2001) Luminescence and energy transfer in CaAl4O7:Tb3+, Ce3+. J Lumin 93(2):107

    Article  CAS  Google Scholar 

  10. Vedda A, Chiodini N, Dimartino D, Fasoli M, Griguta L, Morettiat F, Rosetta E (2005) Thermally stimulated luminescence of Ce and Tb doped SiO2 Sol–gel glasses. J Non Cryst Solids 351:3699

    Article  CAS  Google Scholar 

  11. Sanaye SS, Dhabekar BS, Rajesh K, Menon SN, Shinde SS, GunduRao TK, Bhatt BC (2003) Energy transfer process in CaSO4:Tb, Ce phosphor. J Lumin 105:1

    Article  CAS  Google Scholar 

  12. You H, Hong G, Wu X (2003) Chem Mater 15:2000

    Article  CAS  Google Scholar 

  13. Cheng SD, Kam CH, Buddhudu S (2001) Mater Res Bull 36:1131

    Article  CAS  Google Scholar 

  14. You H, Wu X, Cui H, Hong G (2003). J. Lumin. 104; 223.

  15. Dorenbos P (2003) J Lumin 104:239

    Article  CAS  Google Scholar 

  16. Cheng TM, Chen SC, Yu C (1999) J Solid State Chem 144:347

    Google Scholar 

  17. Hirai T, Kawamura M (2005) J Phys Chem 109:5569

    Article  CAS  Google Scholar 

  18. Cooke DWBL, Bennett BL, Muenchausen RE, Lee JK, Nastasi MA (2004) J Lumin 106:125

    Article  CAS  Google Scholar 

  19. Lihui H, Yiaojun W, Hai L, Xingren L (2001) J Alloys Compd 316:256

    Article  Google Scholar 

  20. Zeng X, Zhao G, Xu J, Li H, He X, Pang H, Jie MY (2005) J Cryst Growth 274:495

    Article  CAS  Google Scholar 

  21. Bangaru S, Muralidharan G (2010) Nucl Instrum Meth Phys Res B 268:1653

    Article  CAS  Google Scholar 

  22. Manimozhi PK, Muralidharan G (2009) Nucl Instrum Meth Phys Res B 267:807

    Article  CAS  Google Scholar 

  23. Manimozhi PK, Muralidharan G (2007) Phys Stat Sol B 244:3730.14

    Google Scholar 

  24. Jia D, Meltzer RS, Yen WM (2002) Appl Phys Lett 90:1535

    Article  Google Scholar 

  25. Jia D, Zhu J, Wu B (2001) JLumin 93:107

    Article  CAS  Google Scholar 

  26. You H, Wn X, Cui H, Hog G (2003) JLumin 104:223

    Article  CAS  Google Scholar 

  27. Pick H (1972). Optical properties of solids, ed. F. Abeles. North Holland, Amsterdam. Chap. 9

  28. Radhakrishna S, Chowdari BVRZ (1972) Phys Stat Sol A 14:11

    Article  CAS  Google Scholar 

  29. Sastry SBS (1985) Nucl Tracks 10:9

    CAS  Google Scholar 

  30. Zhang JJ, Ning JW, Huang LP (2003) Mat Lett 57:3077

    Article  CAS  Google Scholar 

  31. Navarro A, Lopez F (1985) J Phys D 18:939

    Article  CAS  Google Scholar 

  32. Kao FS, Chen TM (2002) J Lumin 96:261

    Article  CAS  Google Scholar 

  33. Morato PP, Luty F (1980) J Phys Chem Solids 41:1181

    Article  CAS  Google Scholar 

  34. Dvan CJ, Li WF, Wu XY, Chen HH, Yang XX, Zhao JT, Fu Yi. B, Z-mingai, Zhang GB, Shi ZS (2005). Make Science and Engin, B. 121; 272.

  35. Bangaru S, Muralidharan G, Bramanadhan GM (2010) J Lumin 130:618

    Article  CAS  Google Scholar 

  36. Gruzinstev AN (1997) J Lumin 71:207

    Article  Google Scholar 

  37. Srivastava AM, Sobieraj MT, Valossis A, Puan SK, Bnaks E (1990) J Electrochem Soc 137:2959

    Article  CAS  Google Scholar 

  38. Li Y, Guillen F, Fouassier C, Hangenmuller P (1985) J Electrochemsoc 132:717

    Article  Google Scholar 

  39. Sastry SBS, Sapru S (1981) J Lumin 23:281

    Article  CAS  Google Scholar 

  40. Chen R (1969) J Appl Phys 40:570

    Article  CAS  Google Scholar 

  41. Halperin A, Braner AA (1960) Phys Rev 17:408

    Article  Google Scholar 

  42. Demchuk MI (1984) Soviet Phys-Tech. Phys Lett 10:149

    Google Scholar 

  43. Yu X, Wang Y, Liu J (2009) J Electro Chem Solid State Lett 13:J18

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors (S.B) gratefully acknowledge the radiation safety division, IGCAR (Indira Gandhi Centre for Atomic Research), Kalpakkam, India for providing experimental support.

Funding

Financial support from UGC (University Grants Commission) Hyderabad (Regional Office) for providing FIP (Faculty Improvement Programme).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bangaru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bangaru, S., Saradha, K. & Muralidharan, G. Luminescence Properties and Optical Absorption of X ray-Irradiated KBr: Ce3+, Tb3+ Crystals. J Fluoresc 25, 239–246 (2015). https://doi.org/10.1007/s10895-014-1499-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1499-4

Keywords

Navigation