Skip to main content
Log in

Synthesis, Characterization, Antimicrobial, DNA Binding and Cleavage Studies of Mixed Ligand Cu(II), Co(II) Complexes

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The mixed ligand complexes MLA of Cu(II) and Co(II) with Schiff base derived from 4-amino antipyrine and 5-NO2 salicylaldehyde (2,3 –dimethyl-1-phenyl-4-(2-hydroxy-5-nitro benzylideneamino)-pyrazol-5-one) as ONO donor (L) and A = 2,2 bipyridine (bpy),1,10 phenonthroline (1,10 phen) as N, N donor ligands have been prepared, owing to their biological and other applications. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, Mass, IR, UV–VIS, powdered XRD and ESR spectral studies, that established MLA type of composition for the metal complexes. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with Calf Thymus (CT) DNA has been studied using absorption spectra, viscosity measurements and fluorescence spectra. The binding constants (Kb) of the complexes were determined as 2.1 × 106 M−1 for complex 1, 2.5x106M−1 for complex 2, 1.16 × 106 M−1 for complex 3,1.25x106M−1 for complex 4, DNA cleavage experiments performed on pBR-322 plasmids using metal complexes in the presence of H2O2 showed that all the complexes afford a pronounced DNA cleavage. Molecular modelling studies were also performed to confirm the geometries of the complexes. The ligand and their metal complexes were screened for their antimicrobial activity against bacteria. The results showed that the metal complexes are biologically active.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sondi SM, Sharma VK, Verma RP, Singhal N, Shukla R, Raghubir R, Dubey MP (1999) Synthesis, anti inflammatory and analegesic activity evalution of some mercapto pyrimidine and pyrimidobenzimidazole derivatives. Synthesis 5(131):878–884

    Article  Google Scholar 

  2. Hardcastle SA, Dieppe P, Gregson CL, Hunter D, Thomas GER, Arden NK, Spector TD, Hart DJ, Laugharne MJGA, Clague GA (2014) Prevalence of radiographic hip osteoarthritis is increased in high bone mass. Osteoarthr Cartil 22(8):1120–1128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Koo HJ, Yoon WJ, Sohn EH, Ham YM, Jang SA, Kwon JE, Jeong YJ (2014) The analgesic and anti-inflammatory effects of Litsea japonica fruit are mediated via suppression of NF-κB and JNK/p38 MAPK activation. Int Immunopharmacol 22:84–97

    Article  CAS  PubMed  Google Scholar 

  4. Sampath K, Raja G, Butcher RJ, Jayabalakrishnan C (2013) DNA binding/cleavage, antioxidant and cytotoxic activities of water soluble cobalt(II) and copper(II) antipyrine complexes. Inorganica Chimica Act 406:44–52

    Article  Google Scholar 

  5. Ito T, Goto C, Noguchi K (2001) Lanthanoid ion-selective solvent polymeric membrane electrode based on 1-phenyl-3-methyl-4-octadecanoyl-5-pyrazolone. Anal Chim Acta 443:41–51

    Article  CAS  Google Scholar 

  6. Sondhi SM, Singhal N, Verma RP, Arora SK, Dastdar SG (2001) Synthsis hemin and porphyrin derivatives and their evalution for anti cancer activity. Indian J Chem b 40:113–119

    Google Scholar 

  7. Bao F, Lu X, Kang B, Wu Q (2006) Vinyl polymerization of norbornene catalyzed by a series of bis(b-ketoiminato)nickel (II) complexes in the presence of methylaluminoxane. Eur Polym J 42:928–934

    Article  CAS  Google Scholar 

  8. Hurley LH (2002) Nat.Rev.2 188

  9. Shanker K, Rohini R, Shravan kumar K, Muralidhar Reddy P, Ho YP, Ravinder (2009) Ru(II) complexes of N4and N2O2 macrocyclic Schiff base ligands, their antibacterial and antifungal studies. Spectrochim Acta A Mol Biomol Spectrosc 73(1):205–211

    Article  PubMed  Google Scholar 

  10. Raman N, Sobha S, Mitu L (2013) Design, synthesis, DNA binding ability, chemical nuclease activity and antimicrobial evaluation of Cu(II), Co(II), Ni(II) and Zn(II) metal complexes containing tridentate Schiff base. J Saudi Chem Soc 17:151–159

    Article  CAS  Google Scholar 

  11. Sathiyaraj S, Sampath K, Raja G, Butcher RJ, Gupta SK, Jayabalakrishnan C (2013) DNA binding/cleavage, antioxidant and cytotoxic activities of water a soluble cobalt(II) and copper(II) antipyrine complexes. Inorg Chim Acta 406:44–52

    Article  CAS  Google Scholar 

  12. Anupama B, Sunitha M, Kumari C, Gyana (2011) Synthesis, characterization, DNA binding and antimicrobial activity of copper (II) complexes with 4-aminoantipyrine schiff bases. Asian J Res Chem 4(10):1529–1535

    Google Scholar 

  13. Reichmann MF, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight an size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  14. Dixit N, Koiri RK, Maurya BK, Trigun SK, Hobartner C, Mishra L (2011) One pot synthesis of Cu(II) 2,2-bipyridyl complexes of 5-hydroxy-hydurilic acid and alloxanic acid: synthesis, crystal structure, chemical nuclease activity and cytotoxicity. J Inorg Biochem 105:256–267

    Article  CAS  PubMed  Google Scholar 

  15. Lakowicz JR, Webber G (1973) Quenching of fluorescence by oxygen probe for structural fluctuations in macromolecules. Biochemistry 12:4161–4170

    Article  CAS  PubMed  Google Scholar 

  16. Waheb ZH, Mashalay MM, Fahem AA (2005) Chem Pap 59:25

    Google Scholar 

  17. Alemi AA, Shaabani B (2000) Synthesis and characterizationof a p-tert-Butylcalix [4] arene and its complex with copper (II). Acta Chim Solv 47:363–369

    CAS  Google Scholar 

  18. Makode JT, Aswar AS (2004) Synthesis, characterization, biological and thermal properties of some new Schiff base complexes derived from 2-hydroxy-5-chloroacetophenone and S-methyldithiocarbazate. Indian J Chem A43(10):2120–2125

    Google Scholar 

  19. Naik VM, Mallur NB (2002) Synthesis and characterization of niobium(V) complexes with terdentate ONO donor hydrazones. Indian J Chem Sect A 41:780–784

    Google Scholar 

  20. Nakamoto K (1997) Infrared and raman spectra of inorganic and coordination compounds, 3rd edn. Wiley, New York

    Google Scholar 

  21. Rabindra Reddy P, Shilpa A, Raju N, Raghavaiah P (2011) Synthesis,structure, DNA binding and cleavage properties of ternary amino acidSchiff base-phen/bipy Cu(II) complexes. J Inorg Bio Chem 105:1603–1612

    Article  Google Scholar 

  22. Yang L, La CA, Anderson OP, Crans DC (2002) 4-Hydroxypyridine-2,6-dicarboxylatodioxovanadate(V) complexes. Solid State Aqueous Chem Inorg Chem 41:6322–6331

    CAS  Google Scholar 

  23. Lever ABP (1971) Inorganic electronic spectroscopy, New York

  24. Dunn TM (1960) The visible and ultraviolet spectra of complex compounds in moderm coordination chemistry interscience, New York

  25. Rabindra Reddy P, Shilpa A (2011) Oxidative and hydrolytic DNA cleavage by Cu(II) complexes of salicylidene tyrosine schiff base and 1,10 phenanthroline/bipyridine. Polyhedron 30:565

    Article  Google Scholar 

  26. Raman N, Kulandaisamy A, Jeyasubramanian K (2002) Synthesis,spectral,redox,and anti microbial activity of Schiff base transition metal(II)complexes derived from 4-aminoantipyrine and benzyl. Syn React Inorg Metal Org Nano Metal Chem 32:1583–1610

    Article  CAS  Google Scholar 

  27. Raman N, Kulandaisamy A, Shanmugasundaram A (2001) Synthesis, spectral, redox and antimicrobial activities of Schiff base complexes derived from 1-phenyl-2,3-dimethyl-4-aminopyrazol-5-one and acetoacetanilide. Trans Met Chem 26:131–135

    Article  CAS  Google Scholar 

  28. Nikolaev AV, Myachina LI, Logvinenko VA (1969) Therm Anal 2:779

    Article  CAS  Google Scholar 

  29. Daniels T (1973) Thermal analysis. Wiley, New York

    Google Scholar 

  30. Freeman ES, Carroll BJ (1958) Phys Chem 62:39

    Google Scholar 

  31. Mishra AP, Khare M (2000) Non-isothermal degradation and kinetic parameters of some Schiff base complexes. J Indian Chem Soc 77:367–370

    CAS  Google Scholar 

  32. Choi SN, Menzel ER, Wasson JR (1977) Electronic spectra of copper(II) dithiocarbamates. J Inorg Nucl Chem 39:417

    Article  CAS  Google Scholar 

  33. Kumar DN, Singh BK, Garg BS, Singh PK (2003) Spectral studies on copper(II) complexes of biologically active glutathione. Spec Chim Acta 59:1487–1496

    Article  Google Scholar 

  34. Hathway BJ, Bardley GN, Gillard RD (1971) Eds, Essays in Chemistry Academic press Newyork, USA

  35. Suresh Babu V, Ramesh A, Raghuram P and Raghava Naidu R(1997) Electron spin resonance studies on complexes of Copper(II) with o-phenolic oximes. Polyhedron1(7–8):607–610

  36. Dhanaraj CJ, Nair MS (2009) Synthesis, characterization, and antimicrobial studies of some Schiff-base metal(II) complexes. J Coord Chem 62:4018–4028

    Article  CAS  Google Scholar 

  37. Peng B, Chao H, Sun B, Li H, Gao F, Ji LN (2007) Synthesis, DNA-binding and photocleavage studies of cobalt(III) mixed-polypyridyl complexes: [Co(phen)2(dpta)]3+ and [Co(phen)2(amtp)]3+. J Inorg Biochem 101:404–411

    Article  CAS  PubMed  Google Scholar 

  38. Uma V, Kanthimathi M, Weyhermuller T, Nair BU (2005) Oxidative DNA cleavage mediated by a new copper(II) terpyridine complex: Crystal structure and DNA binding studies. J Inorg Biochem 99:2299–2307

    Article  CAS  PubMed  Google Scholar 

  39. Kumar CV, Asuncion EH (1993) DNA binding studies and site selective fluorescence sensitization of an anthryl probe. J Am Chem Soc 115:8547–8553

    Article  CAS  Google Scholar 

  40. Kumar LS, Revanaslddappa HD (2011) Synthesis, characterization, antimicrobial, DNA binding, and oxidative cleavage activities of Cu(II) and Co(II) complexes with 2-(2-hydroxybenzylideneamino)isoindoline-1,3-dione. J Coord Chem 64:699–714

    Article  Google Scholar 

  41. Wolfe A, Shimer GH, Meehan T (1987) Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA. BioChem 26:6392

    Article  CAS  Google Scholar 

  42. Fahmi N, Gupta IJ, Singh RV (1998) Sulfur bonded palladium(II)and platinum(II) complexes of biologically potent thioamides. Phos Sulfur Silicon 132:1–8

    Article  CAS  Google Scholar 

  43. Chaudhary A, Singh RV (2003) Studies on biologically potent tetraazamacrocylic complexes of bivalent tin.Phos Sulfur. Silicon 178:615–626

    Article  CAS  Google Scholar 

  44. Arguslab 4.0 Marky Thomson, Planaria software IC, Seattle, WA; www.arguslab.com/

  45. Thompson MA, Zerner MC (1991) A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonas viridis. J Am Chem Soc 113:8210–8215

    Article  CAS  Google Scholar 

  46. Thompson MA, Eric DG, Feller D (1996) J Phys Chem 98:10465

    Article  Google Scholar 

Download references

Acknowledgments

We thank to University grants commission (UGC, NEW Delhi, India) for financial support in the form of junior research fellow to me. We thank to HCU for extending the ESR facility and Department of Bio chemistry (Osmania University, Hyderabad) for microbial activity.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gyana Kumari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

leela, D.S., Ushaiah, B., Anupama, G. et al. Synthesis, Characterization, Antimicrobial, DNA Binding and Cleavage Studies of Mixed Ligand Cu(II), Co(II) Complexes. J Fluoresc 25, 185–197 (2015). https://doi.org/10.1007/s10895-014-1496-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1496-7

Keywords

Navigation