Skip to main content
Log in

pH-Dependent Spectroscopy of Tetracycline and Its Analogs

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Tetracyclines (TCs), broad spectrum antibiotics widely used in the prevention and treatment of infectious diseases, are amphoteric molecules containing several ionizable functional groups that exist predominantly as zwitterions at a given pH value. TCs are reported to undergo a wide variety of reactions at different pH values i.e. TCs form to anhydrotetracyclines at low pH, 4-epitetracyclines at pH 3–5 and isotetracyclines at high pH values. The pH-dependent absorbance and emission properties of tetracycline and its 10 analogs (4-epitetracycline, doxycyline, oxytetracycline, chlortetracycline, 4-epichlortetracycline, isochlortetracycline, methacycline, rolitetracycline, minocycline, and demeclocycline) were investigated and reported in this paper. The main focus of the study was on the pH dependent transformation of epichlortetracycline, chlortetracycline and isotetracycline at basic pH. Absorption, emission and time resolved spectroscopy were used to determine the behavior of the three TC derivatives at this condition. Increasing the buffer’s ionic concentration leads to faster transformation to iCTC. A pH dependent transformation of CTC to iCTC was observed and the lifetimes of CTC and iCTC were determined to be 3.0 and 5.89 ns respectively. The distribution factor of CTC to iCTC at basic pH was also reported for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Fernandez R, Dassie S (2005) Transfer of tetracyclines across the H2O|1,2-dichloroethane interface: analysis of degraded products in strong acid and alkaline solutions. J Electroanal Chem 585:240–249

    Article  CAS  Google Scholar 

  2. Durckheimer W (1975) Tetracyclines: chemistry, biochemistry and structure-activity relations. Angew Chem Int Ed 14:721–734

    Article  CAS  Google Scholar 

  3. Schneider S (2001) Proton and metal ion binding of tetracyclines. In: Nelson M, Hillen W, Greenwald RA (eds) Tetracyclines in biology, chemistry and medicine. Birkhäuser, Basel, pp 65–104

    Chapter  Google Scholar 

  4. Stephens C, Murai K, Brunings K, Woodward R (1956) Acidity constants of the tetracycline antibiotics. J Am Chem Soc 78:4155–4158

    Article  CAS  Google Scholar 

  5. Asleson GL, Frank CW (1976) pH dependence of carbon-13 nuclear magnetic resonance shifts of tetracycline. Microscopic dissociation constants. J Am Chem Soc 98:4745–4749

    Article  CAS  PubMed  Google Scholar 

  6. Leeson LJ, Krueger JE, Nash IA (1963) Concerning the structural assignment of the second and third acidity constants of the tetracycline antibiotics. Tetrahedron Lett 18:1155–1160

    Article  Google Scholar 

  7. Rigler NE, Bag SP, Leyden ED, Sudmeier JL, Reilley CM (1965) Determination of a protonation scheme of tetracycline using nuclear magnetic resonance. Anal Chem 37:872–875

    Article  CAS  PubMed  Google Scholar 

  8. Garrett ER (1963) Variation of pKa-values of tetracyclines in dimethylformamide-water solvents. J Pharm Sci 52:797–799

    Article  CAS  PubMed  Google Scholar 

  9. Anand U, Jash C, Boddepalli RK, Shrivastava A, Mukherjee S (2011) Exploring the mechanism of fluorescence quenching in proteins induced by tetracycline. J Phys Chem B 115:6312–6320

    Article  CAS  PubMed  Google Scholar 

  10. Chi Z, Liu R (2011) Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 12:203–209

    Article  CAS  PubMed  Google Scholar 

  11. Chi Z, Liu R, Yang H, Shen H, Wang J (2011) Binding of tetracycline and chlortetracycline to the enzyme trypsin: spectroscopic and molecular modeling investigations. PLoS ONE 6:e28361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Choudhary S, Kishore N (2012) Unraveling the energetics and mode of the recognition of antibiotics tetracycline and rolitetracycline by bovine serum albumin. Chem Biol Drug Des 80:693–705

    Article  CAS  PubMed  Google Scholar 

  13. Day S, Crouthamel W, Martinelli L, Ma J (1978) Mechanism of fluorometric analysis of tetracycline involve metal complexation. J Pharm Sci 67:1518–1523

    Article  CAS  PubMed  Google Scholar 

  14. Jiang CQ, Wang T (2004) Study of the interactions between tetracycline analogues and lysozyme. Bioorg Med Chem 12:2043–2047

    Article  CAS  PubMed  Google Scholar 

  15. Joseph K, Jun H, Luzzi L (1973) Tetracycline binding to bovine serum albumin studied by fluorescent techniques. J Pharm Sci 62:1261–1264

    Article  Google Scholar 

  16. Morrison H, Olack G, Xiao C (1991) Organic photochemistry. 93. Photochemical and photophysical studies of tetracycline. J Am Chem Soc 113:8110–8118

    Article  CAS  Google Scholar 

  17. Popov PG, Vaptzarova KI, Kossekova GP, Nikolov TK (1972) Fluorometric study of tetracycline-bovine serum albumin interaction. The tetracyclines - a new class of fluorescent probes. Biochem Pharmacol 21:2363–3672

    Article  CAS  PubMed  Google Scholar 

  18. Schneider S, Schmitt MO, Brehm G, Reiher M, Matousek P, Towrie M (2003) Fluorescence kinetics of aqueous solutions of tetracycline and its complexes with Mg2+ and Ca2+. Photochem Photobiol Sci 2:1107–1117

    Article  CAS  PubMed  Google Scholar 

  19. Mathew MK, Balaram P (1980) A reinvestigation of chlortetracycline fluorescence: effect of pH, metal ions, and environment. J Inorg Biochem 13:339–346

    Article  CAS  Google Scholar 

  20. Li Z, Jiao G, Sun G, Song L, Sheng F (2012) Determination on the binding of chlortetracycline to bovine serum albumin using spectroscopic methods. J Biochem Mol Toxicol 26:331–336

    Article  CAS  PubMed  Google Scholar 

  21. Ni Y, Liu Q, Kokot S (2011) Spectrophotometric study of the interaction between chlorotetracycline and bovine serum albumin using Eosin Y as site marker with the aid of chemometrics. Spectrochim Acta A 78:443–448

    Article  Google Scholar 

  22. Schlecht KD, Frank CW (1975) Dehydration of tetracycline. J Pharm Sci 64:352–354

    Article  CAS  PubMed  Google Scholar 

  23. Doershchuk AP, Bitler BA, McCormick JRD (1955) Reversible isomerizations in the tetracycline family. J Am Chem Soc 77:4687

    Article  Google Scholar 

  24. Halling-Sørensen B, Sengeløv G, Tjørnelund J (2002) Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. Arch Environ Contam Toxicol 44:7–16

    Article  Google Scholar 

  25. Mitscher LA (1978) The chemistry of the tetracycline antibiotics. Marcel Dekker, New York

    Google Scholar 

  26. Waller CW, Hutchings BL, Wolf CF, Goldman AA, Broschard RW, Williams JH (1952) Degradation of aureomycin. VI. Isoaureomycin and aureomycin. J Am Chem Soc 74:4981

    Google Scholar 

  27. Wessels JM, Ford WE, Szymczak W, Schneider S (1998) The complexation of tetracycline and anhydrotetracycline with Mg2+ and Ca2+: a spectroscopic study. J Phys Chem B 102:9323–9331

    Article  CAS  Google Scholar 

  28. Siqueira J, Carvalho S, Paniago E, Tosi L, Beraldo H (1994) Metal complexes of anhydrotetracycline. 1. A Spectrometric study of the Cu(II) and Ni(II) complexes. J Pharm Sci 83:291–295

    Article  PubMed  Google Scholar 

  29. Appleton AL, Brombosz SM, Barlow S, Sears JS, Bredas JL, Marder SR, Bunz UHF (2010) Effects of electronegative substitution on the optical and electronic properties of acenes and diazaacenes. Nat Commun 1:91. doi:10.1038/ncomms1088

    Article  PubMed  Google Scholar 

  30. Sun XY, Chen H, Gao H, Guo XQ (2006) Screening of tetracyclines residues in fish muscles by CCD camera based solid-surface fluorescence. J Agric Food Chem 54:9687–9695

    Article  CAS  PubMed  Google Scholar 

  31. Blanchflower WJ, McCracken RJ, Rice DA (1989) Determination of chlortetracycline residues in tissues using high-performance liquid chromatography with fluorescence detection. Analyst 114:421–423

    Article  CAS  PubMed  Google Scholar 

  32. Feldman DH, Kelsey HS, Cavagnol JC (1957) Fluorometric determination of chlortetracycline. Anal Chem 29:1697–1700

    Article  CAS  Google Scholar 

  33. Barbara PF, Jarzeba W (1988) Dynamic solvent effects on polar and nonpolar isomerizations. Acc Chem Res 21:195–199

    Article  CAS  Google Scholar 

  34. Bartok W, Lucchesi PJ, Snider NS (1962) Protolytic dissociation of electronically excited organic acids. J Am Chem Soc 84:1842–1844

    Article  CAS  Google Scholar 

  35. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

  36. Andrae R, Schulze-Hartung T, Melchior P (2010) Dos and don’ts of reduced chi-squared. arXiv:1012.3754

  37. Farkas M, Mojica E, Patel M, Aga D, Berry J (2009) Development of a rapid biolistic assay to determine changes in relative levels of intracellular calcium in leaves following tetracycline uptake by pinto bean plants. Analyst 134:1594–1600

    Article  CAS  PubMed  Google Scholar 

  38. Yang JM, Chen YF, Tu YY, Yen KR, Yang YL (2007) Combinatorial computational approaches to identify tetracycline derivaties as flavavirus inhibitors. PLoS ONE 5:e428

    Article  Google Scholar 

  39. Kulshreta P, Sukumar N, Murray JS, Giese RE, Wood TD (2009) Computational prediction of antibody binding sites on tetracycline antibiotics: electrostatic potentials and average local ionization energies on molecular surfaces. J Phys Chem A 113:756–766

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon the work supported by the National Science Foundation (NSF) under Grant No. 0750321.

Any opinions and conclusion or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the NSF. The author thanks Diana Aga of the Department of Chemistry, University at Buffalo for the use of the LC-MS instrument.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmer-Rico E. Mojica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mojica, ER.E., Nguyen, E., Rozov, M. et al. pH-Dependent Spectroscopy of Tetracycline and Its Analogs. J Fluoresc 24, 1183–1198 (2014). https://doi.org/10.1007/s10895-014-1399-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-014-1399-7

Keywords

Navigation