Skip to main content
Log in

Probing solute-solvent interaction in 1-ethyl-3-methylimidazolium-based room temperature ionic liquids: A time-resolved fluorescence anisotropy study

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four ionic liquids (ILs), viz. 1-ethyl-3-methylimidazolium trifluoroacetate (EMIMTFA), 1-ethyl-3-methylimidazolium ethylsulfate (EMIMESU), 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMTFB) and 1-ethyl-3-methylimidazolium tetracyanoborate (EMIMTCB), as a function of temperature. Between the two probes, AP can act as hydrogen-bond-donor to the solvents having hydrogen bond acceptor ability. The results indicate that the rotational dynamics of C153 is mainly governed by the viscosity of the medium. On the other hand, the rotational motion of AP is found to be significantly hindered in the ILs depending on the nature of anions of the ILs. Rotational coupling constant values for AP in the ILs follow the order TFA > ESU > TCB > TFB. The slower rotational motion of AP in these ILs has been attributed to the specific hydrogen bonding interaction between AP and anions of ILs.

Rotational diffusion of two organic solutes, coumarin153 (C153) and 4-aminophthalimide (AP) has been investigated in four different ionic liquids (ILs) so as to monitor the effects of anions on the rotational dynamics of the solutes exclusively. Figure showing the anisotropy decay profile of AP at 293 K in two isoviscous room temperature ionic liquids having different hydrogen bond acceptors ability

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Chart 1

Similar content being viewed by others

References

  1. Welton T (1999) Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem Rev 99:2071–2084

    Article  PubMed  CAS  Google Scholar 

  2. Sheldon R (2001) Catalytic reactions in ionic liquids. Chem Commun 23992407. doi:10.1039/B107270F

  3. Wasserscheid P, Keim W (2000) Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem Int Ed 39:3772–3789

    Article  CAS  Google Scholar 

  4. Rogers RD, Voth GA (2007) Ionic liquids. Acc Chem Res 40:1077–1078

    Article  PubMed  CAS  Google Scholar 

  5. Weingrätner H (2008) Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew Chem Int Ed 47:654–670

    Article  CAS  Google Scholar 

  6. Rantwijk FV, Sheldon R (2007) Biocatalysis in ionic liquids. Chem Rev 107:2757–2785

    Article  PubMed  CAS  Google Scholar 

  7. Rogers RD, Seddon KR (2003) Ionic liquids-solvents of the future? Science 302:792–793

    Article  PubMed  Google Scholar 

  8. Guo Z, Lue BM, Thomasen K, Meyer AS, Xu X (2007) Predictions of flavonoid solubility in ionic liquids by COSMO-RS: Experimental verification, structural elucidation, and solvation characterization. Green Chem 9:1362–1373

    Article  CAS  Google Scholar 

  9. Masaki T, Nishikawa K, Shirota H (2010) Microscopic study of ionic liquid − h2o systems: Alkyl-group dependence of 1-alkyl-3-methylimidazolium cation. J Phys Chem B 114:6323–6331

    Article  PubMed  CAS  Google Scholar 

  10. Fukazawa H, Ishida T, Shirota H (2011) Ultrafast dynamics in 1-butyl-3-methylimidazolium-based ionic liquids: A femtosecond raman-induced kerr effect spectroscopic study. J Phys Chem B 115:4621–4631

    Article  PubMed  CAS  Google Scholar 

  11. Mandal PK, Sarkar M, Samanta A (2004) Excitation-wavelength-dependent fluorescence behavior of some dipolar molecules in room-temperature ionic liquids. J Phys Chem A 108:9048–9053

    Article  CAS  Google Scholar 

  12. Paul A, Samanta A (2007) Solute rotation and solvation dynamics in an alcohol-functionalized room temperature ionic liquid. J Phys Chem B 111:4724–4731

    Article  PubMed  CAS  Google Scholar 

  13. Paul A, Samanta A (2008) Effect of nonpolar solvents on the solute rotation and solvation dynamics in an imidazolium ionic liquid. J Phys Chem B 112:947–953

    Article  PubMed  CAS  Google Scholar 

  14. Samanta A (2010) Solvation dynamics in ionic liquids: what we have learned from the dynamic fluorescence stokes shift studies. J Phys Chem Lett 1:1557–1562

    Article  CAS  Google Scholar 

  15. Ingram JA, Moog RS, Ito N, Biswas R, Maroncelli M (2003) Solute rotation and solvation dynamics in a room-temperature ionic liquid. J Phys Chem B 107:5926–5932

    Article  CAS  Google Scholar 

  16. Ito N, Arzhantsev S, Heitz M, Maroncelli M (2004) Solvation dynamics and rotation of coumarin 153 in alkylphosphonium ionic liquids. J Phys Chem B 108:5771–5777

    Article  CAS  Google Scholar 

  17. Ito N, Arzhantsev S, Maroncelli M (2004) The probe dependence of solvation dynamics and rotation in the ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate. Chem Phys Lett 396:83–91

    Article  CAS  Google Scholar 

  18. Arzhantsev S, Jin H, Baker GA, Maroncelli M (2007) Measurements of the complete solvation response in ionic liquids. J Phys Chem B 111:4978–4989

    Article  PubMed  CAS  Google Scholar 

  19. Jin H, Baker GA, Arzhantsev S, Dong J, Maroncelli M (2007) Solvation and rotational dynamics of coumarin 153 in ionic liquids: Comparisons to conventional solvents. J Phys Chem B 111:7291–7302

    Article  PubMed  CAS  Google Scholar 

  20. Seth D, Sarkar S, Sarkar N (2008) Solvent and rotational relaxation of coumarin 153 in a protic ionic liquid dimethylethanolammonium formate. J Phys Chem B 112:2629–2636

    Article  PubMed  CAS  Google Scholar 

  21. Sarkar S, Pramanik R, Ghatak C, Setua P, Sarkar N (2010) Probing the interaction of 1-ethyl-3-methylimidazolium ethyl sulfate ([emim][etso4]) with alcohols and water by solvent and rotational relaxation. J Phys Chem B 114:2779–2789

    Article  PubMed  CAS  Google Scholar 

  22. Daschakraborty S, Biswas R (2011) Stokes shift dynamics in (ionic liquid + polar solvent) binary mixtures: Composition dependence. J Phys Chem B 115:4011–4024

    Article  PubMed  CAS  Google Scholar 

  23. Daschakraborty S, Biswas R (2011) Stokes’ shift dynamics in alkylimidazolium aluminate ionic liquids: Domination of solute-IL dipole–dipole interaction. Chem Phys Lett 510:202–207

    Article  CAS  Google Scholar 

  24. Das SK, Sarkar M (2011) Solvation and rotational relaxation of coumarin 153 and 4-aminophthalimide in a new hydrophobic ionic liquid: Role of N–H. . . F interaction on solvation dynamics. Chem Phys Lett 515:23–28

    Article  CAS  Google Scholar 

  25. Das SK, Sarkar M (2012) Solvation and rotational relaxation of coumarin 153 in a new hydrophobic ionic liquid: An excitation wavelength dependence study. J Lumi 132:368–374

    Article  CAS  Google Scholar 

  26. Das SK, Sarkar M (2011) Steady-state and time-resolved fluorescence behavior of coumarin-153 in a hydrophobic ionic liquid and ionic liquid–toluene mixture. J Mol Liq 165:38–43

    Article  CAS  Google Scholar 

  27. Das SK, Sarkar M (2012) Rotational dynamics of coumarin-153 and 4-aminophthalimide in 1-ethyl-3-methylimidazolium alkylsulfate ionic liquids: effect of alkyl chain length on the rotational dynamics. J Phys Chem B 116:194–202

    Article  PubMed  CAS  Google Scholar 

  28. Mali KS, Dutt GB, Mukherjee T (2005) Do organic solutes experience specific interactions with ionic liquids? J Chem Phys 123:174504

    Article  PubMed  CAS  Google Scholar 

  29. Mali KS, Dutt GB, Mukherjee T (2008) Rotational diffusion of a nonpolar and a dipolar solute in 1-butyl-3-methylimidazolium hexafluorophosphate and glycerol: Interplay of size effects and specific interactions. J Chem Phys 128:054504

    Article  PubMed  CAS  Google Scholar 

  30. Dutt GB (2010) Influence of specific interactions on the rotational dynamics of charged and neutral solutes in ionic liquids containing tris(pentafluoroethyl)trifluorophosphate (FAP) anion. J Phys Chem B 114:8971–8977

    Article  PubMed  CAS  Google Scholar 

  31. Karve L, Dutt GB (2011) Rotational diffusion of neutral and charged solutes in ionic liquids: is solute reorientation influenced by the nature of the cation? J Phys Chem B 115:725–729

    Article  PubMed  CAS  Google Scholar 

  32. Karve L, Dutt GB (2012) Rotational diffusion of neutral and charged solutes in 1-butyl-3-methylimidazolium-based ionic liquids: influence of the nature of the anion on solute rotation. J Phys Chem B 116:1824–1830

    Article  PubMed  CAS  Google Scholar 

  33. Fruchey K, Fayer MD (2010) Dynamics in organic ionic liquids in distinct regions using charged and uncharged orientational relaxation probes. J Phys Chem B 114:2840–2845

    Article  PubMed  CAS  Google Scholar 

  34. Khara DC, Samanta A (2010) Rotational dynamics of positively and negatively charged solutes in ionic liquid and viscous molecular solvent studied by time-resolved fluorescence anisotropy measurements. Phys Chem Chem Phys 12:7671–7677

    Article  PubMed  CAS  Google Scholar 

  35. Khara DC, Samanta A (2012) Fluorescence response of coumarin-153 in n-alkyl-n-methylmorpholinium ionic liquids: are these media more structured than the imidazolium ionic liquids?J. Phys Chem B 116:13430–13438

    Article  CAS  Google Scholar 

  36. Khara DC, Kumar JP, Mondal N, Samanta A (2013) Effect of the alkyl chain length on the rotational dynamics of nonpolar and dipolar solutes in a series of n-alkyl-n-methylmorpholinium ionic liquids. J Phys Chem B 117:5156–5164

    Article  PubMed  CAS  Google Scholar 

  37. Das SK, Sahu PK, Sarkar M (2013) Diffusion–viscosity decoupling in solute rotation and solvent relaxation of coumarin153 in ionic liquids containing fluoroalkylphosphate (FAP) anion: A thermophysical and photophysical study. J Phys Chem B 117:636–647

    Article  PubMed  CAS  Google Scholar 

  38. Santhosh K, Banerjee S, Rangaraj N, Samanta A (2010) Fluorescence response of 4-(n, n′-dimethylamino)benzonitrile in room temperature ionic liquids: observation of photobleaching under mild excitation condition and multiphoton confocal microscopic study of the fluorescence recovery dynamics. J Phys Chem B 114:1967–1974

    Article  PubMed  CAS  Google Scholar 

  39. Santhosh K, Samanta A (2010) Modulation of the excited state intramolecular electron transfer reaction and dual fluorescence of crystal violet lactone in room temperature ionic liquids. J Phys Chem B 114:9195–9200

    Article  PubMed  CAS  Google Scholar 

  40. Dutt GB (2005) Molecular rotation as a tool for exploring specific solute–solvent interaction. ChemPhyChem 6:413–418

    Article  CAS  Google Scholar 

  41. Hu CM, Zwanzig R (1974) Rotational friction coefficients for spheroids with the slipping boundary condition. J Chem Phys 60:4354

    Article  CAS  Google Scholar 

  42. Horng ML, Gardecki J, Maroncelli M (1997) Rotational dynamics of coumarin 153: Time-dependent friction, dielectric friction, and other nonhydrodynamic effects. J Phys Chem A 101:1030–1047

    Article  CAS  Google Scholar 

  43. Small EW, Isenberg I (1977) Hydrodynamic properties of a rigid molecule: Rotational and linear diffusion and fluorescence anisotropy. Biopolymers 16:1907–1928

    Article  PubMed  CAS  Google Scholar 

  44. Sension RJ, Hochstrasser RM (1993) Comment on: Rotational friction coefficients for ellipsoids and chemical molecules with slip boundary conditions. J Chem Phys 98:2490

    Article  CAS  Google Scholar 

  45. Valeur B (2002) Molecular fluorescence, principles and applications. Wiley-VCH, Weinheim (FRG), Chapter 8

    Google Scholar 

  46. Hartman RS, Alavi DS, Waldeck DH (1991) An experimental test of dielectric friction models using the rotational diffusion of aminoanthraquinones. J Phys Chem 95:7872–7880

    Article  CAS  Google Scholar 

  47. Kurnikova MG, Balabai N, Waldeck DH, Coalson RD (1998) Rotational relaxation in polar solvents: Molecular dynamics study of solute − solvent interaction. J Am Chem Soc 120:6121–6130

    Article  CAS  Google Scholar 

  48. Maciejewski A, Kubicki J, Dobek K (2003) The origin of time-resolved emission spectra (tres) changes of 4-aminophthalimide (4-ap) in SDS micelles: the role of the hydrogen bond between 4-ap and water present in micelles. J Phys Chem B 107:13986–13999

    Article  CAS  Google Scholar 

  49. Klamt A (1995) Conductor-like screening model for real solvents: A new approach to the quantitative calculation of solvation phenomena. J Phys Chem 99:2224–2235

    Article  CAS  Google Scholar 

Download references

Acknowledgements

M.S. thanks the Department of Science and Technology (DST) for generous research grant. S.K.D is thankful to Council of scientific and Industrial Research (CSIR) for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moloy Sarkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S.K., Sarkar, M. Probing solute-solvent interaction in 1-ethyl-3-methylimidazolium-based room temperature ionic liquids: A time-resolved fluorescence anisotropy study. J Fluoresc 24, 455–463 (2014). https://doi.org/10.1007/s10895-013-1311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1311-x

Keywords

Navigation