Skip to main content
Log in

Synthesis of BODIPY Derivatives Substituted with Various Bioconjugatable Linker Groups: A Construction Kit for Fluorescent Labeling of Receptor Ligands

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The goal of the present study was to design small, functionalized green-emitting BODIPY dyes, which can readily be coupled to target molecules such as receptor ligands, or even be integrated into their pharmacophores. A simple two-step one-pot procedure starting from 2,4-dimethylpyrrole and ω-bromoalkylcarboxylic acid chlorides was used to obtain new ω-bromoalkyl-substituted BODIPY fluorophores (1a1f) connected via alkyl spacers of different length to the 8-position of the fluorescent dye. The addition of radical inhibitors reduced the amount of side products. The ω-bromoalkyl-substituted BODIPYs were further converted to introduce various functional groups: iodo-substituted dyes were obtained by Finkelstein reaction in excellent yields; microwave-assisted reaction with methanolic ammonia led to fast and clean conversion to the amino-substituted dyes; a hydroxyl-substituted derivative was prepared by reaction with sodium ethylate, and thiol-substituted BODIPYs were obtained by reaction of 1a1f with potassium thioacetate followed by alkaline cleavage of the thioesters. Water-soluble derivatives were prepared by introducing sulfonate groups into the 2- and 6-position of the BODIPY core. The synthesized BODIPY derivatives showed high fluorescent yields and appeared to be stable under basic, reducing and oxidative conditions. As a proof of concept, 2-thioadenosine was alkylated with bromoethyl-BODIPY 1b. The resulting fluorescent 2-substituted adenosine derivative 15 displayed selectivity for the A3 adenosine receptor (ARs) over the other AR subtypes, showed agonistic activity, and may thus become a useful tool for studying A3ARs, or a lead structure for further optimization. The new functionalized dyes may be widely used for fluorescent labeling allowing the investigation of biological targets and processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Scheme 2
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AR:

adenosine receptor

A1AR:

A1 adenosine receptor

A2AAR:

A2A adenosine receptor

A2BAR:

A2B adenosine receptor

A3AR:

A3 adenosine receptor

BHT:

3,5-di-tert-butyl-4-hydroxytoluene

BODIPY:

4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene

BSA:

bovine serum albumin

CADO:

2-chloroadenosine

CCPA:

2-chloro-N6-cyclopentyladenosine

CGS21680:

4-[2-[[6-amino-9-(N-ethyl-β-d-ribofuranuronamidosyl)-9H-purin-2-yl]amino]ethyl]benzenepropanoic acid

CHO-cells:

Chinese hamster ovary cells

DCM:

dichloromethane

DMF:

dimethylformamide

DMSO:

dimethyl sulfoxide

DPCPX:

8-cyclopentyl-1,3-dipropylxanthine

FCS:

fetal bovine serum

FWHMabs :

full width at half maximum at the absorption

FWHMem :

full width at half maximum at the emission

h:

human

HBSS:

Hank’s balanced salt solution

HEK:

human embryonic kidney cells

HEPES:

(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid

MW:

microwave

NECA:

5’-(N-ethylcarboxamido)adenosine

PBS:

phosphate buffer saline

r:

rat

RO-20-1724:

4-(3-butoxy-4-methoxyphenyl)methyl-2-imidazolidone

R-PIA:

(R)-N6-(1-methyl-2-phenylethyl)adenosine

TRIS:

tris(hydroxymethyl)aminomethan

References

  1. Wysocki LM, Lavis LD (2011) Advances in the chemistry of small molecule fluorescent probes. Curr Opin Chem Biol 15:752–759

    Article  CAS  PubMed  Google Scholar 

  2. Boens N, Leen V, Dehaen W (2012) Fluorescent indicators based on BODIPY. Chem Soc Rev 41:1130–1172

    Article  CAS  PubMed  Google Scholar 

  3. Treibs A, Kreuzer F-H (1968) Difluorboryl-Komplexe von Di- und Tripyrrylmethenen (Difluoroboryl complexes of di- and tripyrrylmethens). Liebigs Ann 718:208–223

    Article  CAS  Google Scholar 

  4. Qian X, Xiao Y, Xu Y, Guo X, Qian J, Zhu W (2010) “Alive” dyes as fluorescent sensors: fluorophore, mechanism, receptor and images in living cells. Chem Commun 46:6418–6436

    Article  CAS  Google Scholar 

  5. Ulrich G, Ziessel R, Harriman A (2008) The chemistry of fluorescent BODIPY dyes: versatility unsurpassed. Angew Chem Int Ed Engl 47:1184–1201

    Article  CAS  PubMed  Google Scholar 

  6. Loudet A, Burgess K (2007) BODIPY dyes and their derivatives: syntheses and spectroscopic properties. Chem Rev 107:4891–4932

    Article  CAS  PubMed  Google Scholar 

  7. Poirel A, De Nicola A, Retailleau P, Ziessel R (2012) Oxidative coupling of 1,7,8-unsubstituted BODIPYs: synthesis, electrochemical and spectroscopic properties. J Org Chem 77:7512–7525

    Article  CAS  PubMed  Google Scholar 

  8. Osorio-Martinez CA, Urias-Benavides A, Gomez-Duran CF, Banuelos J, Esnal I, Lopez Arbeloa I, Pena-Cabrera E (2012) 8-Amino-BODIPYs: cyanines or hemicyanines? The effect of the coplanarity of the amino group on their optical properties. J Org Chem 77:5434–5438

    Article  CAS  PubMed  Google Scholar 

  9. Banfi S, Caruso E, Zaza S, Mancini M, Gariboldi MB, Monti E (2012) Synthesis and photodynamic activity of a panel of BODIPY dyes. J Photochem Photobiol B 114:52–60

    Article  CAS  PubMed  Google Scholar 

  10. Ulrich G, Ziessel R, Haefele A (2012) A general synthetic route to 3,5-substituted boron dipyrromethenes: applications and properties. J Org Chem 77:4298–4311

    Article  CAS  PubMed  Google Scholar 

  11. Niu SL, Massif C, Ulrich G, Renard PY, Romieu A, Ziessel R (2012) Water-soluble red-emitting distyryl-borondipyrromethene (BODIPY) dyes for biolabeling. Chemistry 18:7229–7242

    Article  CAS  PubMed  Google Scholar 

  12. Haugland RP, Spence MTZ, Johnson ID, Basey A (2005) The handbook: a guide to fluorescent probes and labeling technology. 10 ed. Molecular probes

  13. Vos d. WE, Pardoen JA, Van KJA, Lugtenburg J (1977) Pyrromethene-boron difluoride complexes (4,4′-difluoro-4-bora-3a,4a-diaza-s-indacenes). Synthesis and luminescence properties. J Recl Trav Chim Pays-Bas 96:306–309

    Google Scholar 

  14. Wories HJ, Koek JH, Lodder G, Lugtenburg J, Fokkens R, Driessen O, Mohn GR (1985) A novel water-soluble fluorescent probe: synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethene-1,1′-BF2 complex. J Recl Trav Chim Pays-Bas 104:288–291

    Article  CAS  Google Scholar 

  15. Falk H, Schoppel G (1990) Beiträge zur Chemie der Pyrrolpigmente, Darstellung und Lumineszenz bichromophorer 5-Aryl-dipyrrinderivate (Contributions to the chemistry of pyrrole pigments, preparation and luminiscence of bichromophoric 5-aryl-dipyrrin derivatives). Monatsh Chem 121:67–76

    Article  CAS  Google Scholar 

  16. Gossauer A, Nydegger F, Kiss T, Sleziak R, Stoeckli-Evans H (2004) Synthesis, chiroptical properties, and solid-state structure determination of two new chiral dipyrrin difluoroboryl chelates. J Am Chem Soc 126:1772–1780

    Article  CAS  PubMed  Google Scholar 

  17. Kumar TS, Mishra S, Deflorian F, Yoo LS, Phan K, Kecskes M, Szabo A, Shinkre B, Gao ZG, Trenkle W, Jacobson KA (2011) Molecular probes for the A2A adenosine receptor based on a pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine scaffold. Bioorg Med Chem Lett 21:2740–2745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Baker JG, Adams LA, Salchow K, Mistry SN, Middleton RJ, Hill SJ, Kellam B (2011) Synthesis and characterization of high-affinity 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene-labeled fluorescent ligands for human β-adrenoceptors. J Med Chem 54:6874–6887

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Daval SB, Valant C, Bonnet D, Kellenberger E, Hibert M, Galzi JL, Ilien B (2012) Fluorescent derivatives of AC-42 to probe bitopic orthosteric/allosteric binding mechanisms on muscarinic M1 receptors. J Med Chem 55:2125–2143

    Article  CAS  PubMed  Google Scholar 

  20. Stoddart LA, Vernall AJ, Denman JL, Briddon SJ, Kellam B, Hill SJ (2012) Fragment screening at adenosine-A3 receptors in living cells using a fluorescence-based binding assay. Chem Biol 19:1105–1115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Wagenknecht HA (2008) Fluorescent DNA base modifications and substitutes: multiple fluorophore labeling and the DETEQ concept. Ann N Y Acad Sci 1130:122–130

    Article  CAS  PubMed  Google Scholar 

  22. Li Z, Bai X, Ruparel H, Kim S, Turro NJ, Ju J (2003) A photocleavable fluorescent nucleotide for DNA sequencing and analysis. Proc Natl Acad Sci U S A 100:414–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Metzker ML, Lu J, Gibbs RA (1996) Electrophoretically uniform fluorescent dyes for automated DNA sequencing. Science 271:1420–1422

    Article  CAS  PubMed  Google Scholar 

  24. Bura T, Retailleau P, Ulrich G, Ziessel R (2011) Highly substituted BODIPY dyes with spectroscopic features sensitive to the environment. J Org Chem 76:1109–1117

    Article  CAS  PubMed  Google Scholar 

  25. Ziessel R, Ulrich G, Harriman A, Alamiry MA, Stewart B, Retailleau P (2009) Solid-state gas sensors developed from functional difluoroboradiazaindacene dyes. Chemistry 15:1359–1369

    Article  CAS  PubMed  Google Scholar 

  26. Baki CN, Akkaya EU (2001) Boradiazaindacene-appended calix[4]arene: fluorescence sensing of pH near neutrality. J Org Chem 66:1512–1513

    Article  CAS  PubMed  Google Scholar 

  27. Cheng T, Wang T, Zhu W, Chen X, Yang Y, Xu Y, Qian X (2011) Red-emission fluorescent probe sensing cadmium and pyrophosphate selectively in aqueous solution. Org Lett 13:3656–3659

    Article  CAS  PubMed  Google Scholar 

  28. Lu H, Xiong L, Liu H, Yu M, Shen Z, Li F, You X (2009) A highly selective and sensitive fluorescent turn-on sensor for Hg2+ and its application in live cell imaging. Org Biomol Chem 7:2554–2558

    Article  CAS  PubMed  Google Scholar 

  29. Rurack K, Kollmannsberger M, Resch-Genger U, Daub J (2000) A selective and sensitive fluoroionophore for HgII, AgI, and CuII with virtually decoupled fluorophore and receptor units. J Am Chem Soc 122:968–969

    Article  CAS  Google Scholar 

  30. Beatty KE, Szychowski J, Fisk JD, Tirrell DA (2011) A BODIPY-cyclooctyne for protein imaging in live cells. Chembiochem 12:2137–2139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bergstrom F, Hagglof P, Karolin J, Ny T, Johansson LB (1999) The use of site-directed fluorophore labeling and donor-donor energy migration to investigate solution structure and dynamics in proteins. Proc Natl Acad Sci U S A 96:12477–12481

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Wang D, Fan J, Gao X, Wang B, Sun S, Peng X (2009) Carboxyl BODIPY dyes from bicarboxylic anhydrides: one-pot preparation, spectral properties, photostability, and biolabeling. J Org Chem 74:7675–7683

    Article  CAS  PubMed  Google Scholar 

  33. Li Z, Mintzer E, Bittman R (2006) First synthesis of free cholesterol-BODIPY conjugates. J Org Chem 71:1718–1721

    Article  CAS  PubMed  Google Scholar 

  34. Macchia M, Salvetti F, Bertini S, Di Bussolo V, Gattuso L, Gesi M, Hamdan M, Klotz KN, Laragione T, Lucacchini A, Minutolo F, Nencetti S, Papi C, Tuscano D, Martini C (2001) 7-Nitrobenzofurazan (NBD) derivatives of 5′-N-ethylcarboxamidoadenosine (NECA) as new fluorescent probes for human A3 adenosine receptors. Bioorg Med Chem Lett 11:3023–3026

    Article  CAS  PubMed  Google Scholar 

  35. Macchia M, Salvetti F, Barontini S, Calvani F, Gesi M, Hamdan M, Lucacchini A, Pellegrini A, Soldani P, Martini C (1998) Fluorescent probes for adenosine receptors: synthesis and biology of N6-dansylaminoalkyl-substituted NECA derivatives. Bioorg Med Chem Lett 8:3223–3228

    Article  CAS  PubMed  Google Scholar 

  36. Middleton RJ, Briddon SJ, Cordeaux Y, Yates AS, Dale CL, George MW, Baker JG, Hill SJ, Kellam B (2007) New fluorescent adenosine A1-receptor agonists that allow quantification of ligand-receptor interactions in microdomains of single living cells. J Med Chem 50:782–793

    Article  CAS  PubMed  Google Scholar 

  37. May LT, Briddon SJ, Hill SJ (2010) Antagonist selective modulation of adenosine A1 and A3 receptor pharmacology by the food dye Brilliant Black BN: evidence for allosteric interactions. Mol Pharmacol 77:678–686

    Article  CAS  PubMed  Google Scholar 

  38. Briddon SJ, Middleton RJ, Yates AS, George MW, Kellam B, Hill SJ (2004) Application of fluorescence correlation spectroscopy to the measurement of agonist binding to a G-protein coupled receptor at the single cell level. Faraday Discuss 126:197–207

    Article  CAS  PubMed  Google Scholar 

  39. Kozma E, Kumar TS, Federico S, Phan K, Balasubramanian R, Gao ZG, Paoletta S, Moro S, Spalluto G, Jacobson KA (2012) Novel fluorescent antagonist as a molecular probe in A3 adenosine receptor binding assays using flow cytometry. Biochem Pharmacol 83:1552–1561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Das A, Sanjayan GJ, Kecskes M, Yoo L, Gao ZG, Jacobson KA (2010) Nucleoside conjugates of quantum dots for characterization of G protein-coupled receptors: strategies for immobilizing A2A adenosine receptor agonists. J Nanobiotechnology 8(11):1–19

    Google Scholar 

  41. Kecskes M, Kumar TS, Yoo L, Gao ZG, Jacobson KA (2010) Novel Alexa Fluor-488 labeled antagonist of the A2A adenosine receptor: application to a fluorescence polarization-based receptor binding assay. Biochem Pharmacol 80:506–511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Kecskes A, Tosh DK, Wei Q, Gao ZG, Jacobson KA (2011) GPCR ligand dendrimer (GLiDe) conjugates: adenosine receptor interactions of a series of multivalent xanthine antagonists. Bioconjug Chem 22:1115–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Tosh DK, Chinn M, Yoo LS, Kang DW, Luecke H, Gao ZG, Jacobson KA (2010) 2-Dialkynyl derivatives of (N)-methanocarba nucleosides: ‘clickable’ A3 adenosine receptor-selective agonists. Bioorg Med Chem 18:508–517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM 2nd, Barrett MO, Fricks IP, Harden TK, Gao ZG, Jacobson KA (2010) Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 21:372–384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Vernall AJ, Stoddart LA, Briddon SJ, Hill SJ, Kellam B (2011) Highly potent and selective fluorescent antagonists of the human adenosine A3 receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. J Med Chem 55:1771–1782

    Article  Google Scholar 

  46. Brand F, Klutz AM, Jacobson KA, Fredholm BB, Schulte G (2008) Adenosine A2A receptor dynamics studied with the novel fluorescent agonist Alexa488-APEC. Eur J Pharmacol 590:36–42

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. McCabe RT, Skolnick P, Jacobson KA (1992) 2-[2-[4-[2-[2-[1,3-Dihydro-1,1-bis (4-hydroxyphenyl)-3-oxo-5-isobenzofuranthioureidyl]ethylaminocarbonyl]ethyl]phenyl]ethyl-amino]-5′-N-ethylcarboxamidoadenosine (FITC-APEC): a fluorescent ligand for A2A-adenosine receptors. J Fluoresc 2:217–223

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Jacobson KA, Ukena D, Padgett W, Kirk KL, Daly JW (1987) Molecular probes for extracellular adenosine receptors. Biochem Pharmacol 36:1697–1707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Baker JG, Middleton R, Adams L, May LT, Briddon SJ, Kellam B, Hill SJ (2010) Influence of fluorophore and linker composition on the pharmacology of fluorescent adenosine A1 receptor ligands. Br J Pharmacol 159:772–786

    Article  CAS  PubMed  Google Scholar 

  50. Dreyfuss G, Schwartz K, Blout ER, Barrio JR, Liu FT, Leonard NJ (1978) Fluorescent photoaffinity labeling: adenosine 3′,5′-cyclic monophosphate receptor sites. Proc Natl Acad Sci U S A 75:1199–1203

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kuder K, Kiec-Kononowicz K (2008) Fluorescent GPCR ligands as new tools in pharmacology. Curr Med Chem 15:2132–2143

    Article  CAS  PubMed  Google Scholar 

  52. Shepherd JL, Kell A, Chung E, Sinclar CW, Workentin MS, Bizzotto D (2004) Selective reductive desorption of a SAM-coated gold electrode revealed using fluorescence microscopy. J Am Chem Soc 126:8329–8335

    Article  CAS  PubMed  Google Scholar 

  53. Guo B, Peng X, Cui A, Wu Y, Tian M, Zhang L, Chen X, Gao Y (2007) Synthesis and spectral properties of new boron dipyrromethene dyes. Dyes Pigments 73:206–210

    Article  CAS  Google Scholar 

  54. Klotz KN, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes - characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 357:1–9

    Article  CAS  PubMed  Google Scholar 

  55. Weyler S, Fulle F, Diekmann M, Schumacher B, Hinz S, Klotz KN, Müller CE (2006) Improving potency, selectivity, and water solubility of adenosine A1 receptor antagonists: xanthines modified at position 3 and related pyrimido[1,2,3-cd]purinediones. Chem Med Chem 1:891–902

    Article  CAS  PubMed  Google Scholar 

  56. Drabczynska A, Müller CE, Karolak-Wojciechowska J, Schumacher B, Schiedel A, Yuzlenko O, Kiec-Kononowicz K (2007) N9-benzyl-substituted 1,3-dimethyl- and 1,3-dipropyl-pyrimido[2,1-f]purinediones: synthesis and structure-activity relationships at adenosine A1 and A2A receptors. Bioorg Med Chem 15:5003–5017

    Article  CAS  PubMed  Google Scholar 

  57. El-Tayeb A, Iqbal J, Behrenswerth A, Romio M, Schneider M, Zimmermann H, Schrader J, Müller CE (2009) Nucleoside-5′-monophosphates as prodrugs of adenosine A2A receptor agonists activated by ecto-5′-nucleotidase. J Med Chem 52:7669–7677

    Article  CAS  PubMed  Google Scholar 

  58. El-Tayeb A, Michael S, Abdelrahman A, Behrenswerth A, Gollos S, Nieber K, Müller CE (2011) Development of polar adenosine A2A receptor agonists for inflammatory bowel disease: synergism with A2B antagonists. ACS Med Chem Lett 2:890–895

    Article  CAS  Google Scholar 

  59. Borrmann T, Hinz S, Bertarelli DC, Li W, Florin NC, Scheiff AB, Müller CE (2009) 1-Alkyl-8-(piperazine-1-sulfonyl)phenylxanthines: development and characterization of adenosine A2B receptor antagonists and a new radioligand with subnanomolar affinity and subtype specificity. J Med Chem 52:3994–4006

    Article  CAS  PubMed  Google Scholar 

  60. Bruns RF, Lu GH, Pugsley TA (1986) Characterization of the A2 adenosine receptor labeled by [3H]NECA in rat striatal membranes. Mol Pharmacol 29:331–346

    CAS  PubMed  Google Scholar 

  61. Nordstedt C, Fredholm BB (1990) A modification of a protein-binding method for rapid quantification of cAMP in cell-culture supernatants and body fluid. Anal Biochem 189:231–234

    Article  CAS  PubMed  Google Scholar 

  62. Schiedel AC, Hinz S, Thimm D, Sherbiny F, Borrmann T, Maass A, Müller CE (2011) The four cysteine residues in the second extracellular loop of the human adenosine A2B receptor: role in ligand binding and receptor function. Biochem Pharmacol 82:389–399

    Article  CAS  PubMed  Google Scholar 

  63. Euler H, Kirfel A, Freudenthal SJ, Müller CE (2002) Crystal structure of 8-(5-bromopentyl)-4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene, C18H24BBrF2N2. Z Kristallogr NCS 217:543–545

    CAS  Google Scholar 

  64. Euler H, Kirfel A, Freudenthal SJ, Müller CE (2002) Crystal structure of 4-bromobutyric acid 3-((4,4-difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacen)-8-yl)propyl ester, C20H26BBrF2N2O2. Z Kristallogr NCS 217:541–542

    CAS  Google Scholar 

  65. Ziessel R, Ulrich G, Harriman A (2007) The chemistry of BODIPY: a new El Dorado for fluorescence tools. New J Chem 31:496–501

    Article  CAS  Google Scholar 

  66. Wang P, Giese RW (1998) Phosphate-specific fluorescence labeling with BO-IMI: reaction details. J Chromatogr A 809:211–218

    Article  CAS  PubMed  Google Scholar 

  67. Yang L, Simionescu R, Lough A, Yan H (2011) Some observations relating to the stability of the BODIPY fluorophore under acidic and basic conditions. Dyes Pigments 91:264–267

    Article  CAS  Google Scholar 

  68. Niu SL, Ulrich G, Ziessel R, Kiss A, Renard PY, Romieu A (2009) Water-soluble BODIPY derivatives. Org Lett 11:2049–2052

    Article  CAS  PubMed  Google Scholar 

  69. Dilek O, Bane SL (2009) Synthesis, spectroscopic properties and protein labeling of water soluble 3,5-disubstituted boron dipyrromethenes. Bioorg Med Chem Lett 19:6911–6913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Vernall AJ, Stoddart LA, Briddon SJ, Hill SJ, Kellam B (2012) Highly potent and selective fluorescent antagonists of the human adenosine A3 receptor based on the 1,2,4-triazolo[4,3-a]quinoxalin-1-one scaffold. J Med Chem 55:1771–1782

    Article  CAS  PubMed  Google Scholar 

  71. Middleton RJ, Kellam B (2005) Fluorophore-tagged GPCR ligands. Curr Opin Chem Biol 9:517–525

    Article  CAS  PubMed  Google Scholar 

  72. Cordeaux Y, Briddon SJ, Alexander SP, Kellam B, Hill SJ (2008) Agonist-occupied A3 adenosine receptors exist within heterogeneous complexes in membrane microdomains of individual living cells. FASEB J 22:850–860

    Article  CAS  PubMed  Google Scholar 

  73. Dale CL, H. SJ, Kellam (2012) New potent, short-linker BODIPY-630/650 labelled fluorescent adenosine receptor agonists. B Med Chem Commun 3:333–338

    Google Scholar 

  74. Fredholm BB, I.J. AP, Jacobson KA, Linden J, Müller CE (2011) International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors--an update. Pharmacol Rev 63:1–34

    Google Scholar 

  75. El-Tayeb A, Gollos S (2012) Synthesis and structure-activity relationships of 2-hydrazinyladenosine derivatives as A2A adenosine receptor ligands. Bioorg Med Chem 21:436–447

    Article  PubMed  Google Scholar 

  76. Müller CE, Jacobson KA (2011) Recent developments in adenosine receptor ligands and their potential as novel drugs. Biochim Biophys Acta 1808:1290–1308

    Article  PubMed Central  PubMed  Google Scholar 

  77. Kikugawa K, Suehiro H, Yanase R, Aoki A (1977) Platelet aggregation inhibitors. IX. Chemical transformation of adenosine into 2-thioadenosine derivatives. Chem Pharm Bull (Tokyo) 25:1959–1969

    Article  CAS  Google Scholar 

  78. Jarvis MF, Schulz R, Hutchison AJ, Do UH, Sills MA, Williams M (1989) [3H]CGS21680, a selective A2 adenosine receptor agonist directly labels A2 receptors in rat brain. J Pharmacol Exp Ther 251:888–893

    CAS  PubMed  Google Scholar 

  79. Gao ZG, Blaustein JB, Gross AS, Melman N, Jacobson KA (2003) N6-substituted adenosine derivatives: selectivity, efficacy, and species differences at A3 adenosine receptors. Biochem Pharmacol 65:1675–1684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Klotz KN, Lohse MJ, Schwabe U, Cristalli G, Vittori S, Grifantini M (1989) 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)–a high affinity agonist radioligand for A1 adenosine receptors. Naunyn Schmiedeberg’s Arch Pharmacol 340:679–683

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Prof. Dr. Markus Sauer and Dr. Ralf Brune for providing the infrastructure and guidance to determine fluorescent quantum yields. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support (GRK 804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa E. Müller.

Additional information

Fabian Heisig and Sabrina Gollos are contributed equally.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

NMR spectra and HRMS spectra of all new compounds, CE-UV data of compound 3e, absorption and emission spectra of compounds 1a-1 f. This material is available free of charge via the Internet at http://springer.com. (DOCX 21364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heisig, F., Gollos, S., Freudenthal, S.J. et al. Synthesis of BODIPY Derivatives Substituted with Various Bioconjugatable Linker Groups: A Construction Kit for Fluorescent Labeling of Receptor Ligands. J Fluoresc 24, 213–230 (2014). https://doi.org/10.1007/s10895-013-1289-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1289-4

Keywords

Navigation