Skip to main content
Log in

Synthesis and Analytical Application of a Novel Fluorescent Hg2+ Probe 3′, 6′-Bis(Diethylamino)-2-((2,4-Dimethoxybenzylidene)Amino)Spiro[Isoindoline-1,9′-Xanthene]-3-Thione

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A novel probe, 3′,6′ - bis(diethylamino) -2- ((2,4-dimethoxybenzylidene)amino) spiro [isoindoline-1,9′-xanthene]-3-thione (RBS), was designed and synthesized. Its structure was characterized with elemental analysis, IR spectra and 1H NMR. The probe displayed highly selective and sensitive recognition of Hg2+. Reacting with mercury ions in aqueous solution, its fluorescence intensity was enhanced significantly, while its color was changed from colorless to pink. So, a new fluorescence method of detection of Hg2+ was proposed. Its dynamic response concentration range and detection limit for Hg2+ were 5.00 × 10−9 M to 1.00 × 10−6 M detected and 1.83 × 10−9 M, respectively. Satisfying results were obtained when the probe was applied to detect spiked Hg2+ in samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 2

Similar content being viewed by others

References

  1. Wolfe MF, Schwarzbach S, Sulaiman RA (1998) Effects of mercury on wildlife: a comprehensive review. Environ Toxicol Chem 17(2):146–160

    Article  CAS  Google Scholar 

  2. Weiss B, Clarkson TW, Simon W (2002) Silent latency periods in methylmercury poisoning and in neurodegenerative disease. Environ Health Perspect 110(Suppl 5):851–854

    Google Scholar 

  3. Guallar E, Sanz-Gallardo MI, Veer P, Bode P, Aro A, Gómez-Aracena J, Kark JD, Riemersma RA, Martín-Moreno JM, Kok FJ (2002) Mercury, fish oils, and the risk of myocardial infarction. N Engl J Med 347(22):1747–1754

    Article  PubMed  CAS  Google Scholar 

  4. George GN, Prince RC, Gailer J, Buttigieg GA, Denton MB, Harris HH, Pickering IJ (2004) Mercury binding to the chelation therapy agents DMSA and DMPS and the rational design of custom chelators for mercury. Chem Res Toxicol 17(8):999–1006

    Article  PubMed  CAS  Google Scholar 

  5. Huang RJ, Zhuang ZX, Tai Y, Huang RF, Wang XR, Lee FSC (2006) Direct analysis of mercury in Traditional Chinese Medicines using thermolysis coupled with on-line atomic absorption spectrometry. Talanta 68(3):728–734

    Article  PubMed  CAS  Google Scholar 

  6. Llobet JM, Falco G, Casas C, Teixido A, Domingo JL (2003) Concentrations of arsenic, cadmium, mercury, and lead in common foods and estimated daily intake by children, adolescents, adults, and seniors of Catalonia, Spain. J Agric Food Chem 51(3):838–842

    Article  PubMed  CAS  Google Scholar 

  7. Dias Filho NL, do Carmo DR (2006) Study of an organically modified clay: selective adsorption of heavy metal ions and voltammetric determination of mercury (II). Talanta 68(3):919–927

    Article  PubMed  CAS  Google Scholar 

  8. Zejli H, Sharrock P, Hidalgo-Hidalgo de Cisneros JL, Naranjo-Rodriguez I, Temsamani KR (2005) Voltammetric determination of trace mercury at a sonogel–carbon electrode modified with poly-3-methylthiophene. Talanta 68(1):79–85

    Article  PubMed  CAS  Google Scholar 

  9. Wang M, Zhang Y, Feng WY, Guan M, Wang B, Shi JW, Zhu MT, Li B, Zhao YL, Chai ZF (2007) Determination of mercury in fish by isotope dilution inductively coupled plasma-mass spectrometry. Chin J Anal Chem 35(7):945–948

    Article  CAS  Google Scholar 

  10. Fitzgerald WF, Gill GA (1979) Subnanogram determination of mercury by two-stage gold amalgamation and gas phase detection applied to atmospheric analysis. Anal Chem 51(11):1714–1720

    Article  CAS  Google Scholar 

  11. Yoon S, Albers AE, Wong AP, Chang CJ (2005) Screening mercury levels in fish with a selective fluorescent chemosensor. J Am Chem Soc 127(46):16030–16031

    Article  PubMed  CAS  Google Scholar 

  12. Wanichacheva N, Setthakarn K, Prapawattanapol N, Hanmeng O, Sanghiran Lee V, Grudpan K (2012) Rhodamine B-based “turn-on” fluorescent and colorimetric chemosensors for highly sensitive and selective detection of mercury (II) ions. J Lumin 132(1):35–40

    Article  CAS  Google Scholar 

  13. Ko SK, Yang YK, Tae J, Shin I (2006) In vivo monitoring of mercury ions using a rhodamine-based molecular probe. J Am Chem Soc 128(43):14150–14155

    Article  PubMed  CAS  Google Scholar 

  14. Wang L, Yan JX, Qin W, Liu W, Wang R (2012) A new rhodamine-based single molecule multianalyte (Cu2+, Hg2+) sensor and its application in the biological system. Dye Pigment 92(3):1083–1090

    Article  CAS  Google Scholar 

  15. Yoon S, Miller EW, He Q, Do PH, Chang CJ (2007) A bright and specific fluorescent sensor for mercury in water, cells, and tissue. J Angew Chem Int Ed 46(35):6658–6661

    Article  CAS  Google Scholar 

  16. Yang H, Zhou Z, Huang K, Yu M, Li F, Yi T, Huang C (2007) Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit. Org Lett 9(23):4729–4732

    Article  PubMed  CAS  Google Scholar 

  17. Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-emitting probe. J Am Chem Soc 129(18):5910–5918

    Article  PubMed  CAS  Google Scholar 

  18. Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem 46(40):7587–7590

    Article  CAS  Google Scholar 

  19. Zhang D, Li M, Wang M, Wang J, Yang X, Ye Y, Zhao Y (2013) A rhodamine-phosphonate off-on fluorescent sensor for Hg2+ in natural water and its application in live cell imaging. Sensors Actuator B Chem 177:997–1002

    Article  CAS  Google Scholar 

  20. Yapici NB, Jockusch S, Moscatelli A, Mandalapu SR, Itagaki Y, Bates DK, Wiseman S, Gibson KM, Turro NJ (2011) New rhodamine nitroxide based fluorescent probes for intracellular hydroxyl radical identification in living cells. Org Lett 14(1):50–53

    Article  PubMed  Google Scholar 

  21. Zheng H, Qian ZH, Xu L, Yuan FF, Lan LD, Xu JG (2006) Switching the recognition preference of rhodamine B spirolactam by replacing one atom: design of rhodamine B thiohydrazide for recognition of Hg (II) in aqueous solution. Org Lett 8(5):859–861

    Article  PubMed  CAS  Google Scholar 

  22. Lin WY, Cao XW, Ding YD, Yuan L, Yu QX (2010) A reversible fluorescent Hg2+ chemosensor based on a receptor composed of a thiol atom and an alkene moiety for living cell fluorescence imaging. Org Biomol Chem 8(16):3618–3620

    Article  PubMed  CAS  Google Scholar 

  23. Yang XF, Guo XQ, Zhao YB (2002) Development of a novel rhodamine-type fluorescent probe to determine peroxynitrite. Talanta 57(5):883–890

    PubMed  CAS  Google Scholar 

  24. Benesi HA, Hildebrand JH (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. J Am Chem Soc 71(8):2703–2707

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Nature Science Foundation of China (21175083).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jigang Gao or Jie Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, L., Gao, J. et al. Synthesis and Analytical Application of a Novel Fluorescent Hg2+ Probe 3′, 6′-Bis(Diethylamino)-2-((2,4-Dimethoxybenzylidene)Amino)Spiro[Isoindoline-1,9′-Xanthene]-3-Thione. J Fluoresc 23, 989–996 (2013). https://doi.org/10.1007/s10895-013-1225-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1225-7

Keywords

Navigation