Skip to main content
Log in

Quantum Dots (QDs) Based Fluorescent Sensor for the Selective Determination of Nimesulide

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Fluorescent PET (Photoinduced Electron Transfer) has been of particular growth in recent times. A novel PET based fluorescent sensor using unmodified CdSe quantum dots (QDs) has been developed for the trace determination of Nimesulide (NIM). The sensor is based on the selective fluorescence quenching of quantum dots by NIM in presence of other NSAIDs and is found that intensity of quenching is linearly related to NIM concentration in the range 8.2 × 10−7 – 4.01 × 10−5 M. The mechanism of interaction is discussed. Finally, the potential application of the proposed method for the trace determination of NIM in pharmaceutical formulation is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5

Similar content being viewed by others

References

  1. Brucher M Jr, Morrone M, Gin P, Weiss S, Alvisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  Google Scholar 

  2. Medintz IL, Uyeda HT, Goldman ER, Mattoussi H (2005) Quantum dot bioconjugates for imaging, labelling and sensing. Nat Mater 4:435–446

    Article  PubMed  CAS  Google Scholar 

  3. Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115:8706–8715

    Article  CAS  Google Scholar 

  4. Gao X, Cui Y, Levenson RL, Cheng WK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969–976

    Article  PubMed  CAS  Google Scholar 

  5. Wang L, Chen H, Wang L, Li L, Xu F, Liu J, Zhu C (2004) Preparation and application of a novel composite nanoparticle as a protein fluorescence probe. Anal Lett 37:213–223

    Article  CAS  Google Scholar 

  6. Chen X, Wang X, Liu L, Yang D, Fan L (2005) Functionalized semiconductor nanocrystals for ultrasensitive detection of peptides. Anal Chim Acta 542:144–150

    Article  CAS  Google Scholar 

  7. Liang J, Huang S, Zeng D, He Z, Ji X, Ai X, Yang H (2006) CdSe quantum dots as luminescent probes for spironolactone determination. Talanta 69:126–130

    Article  PubMed  CAS  Google Scholar 

  8. Ma Y, Yang C, Li N, Yang X (2005) A sensitive method for the detection of catecholamine based on fluorescence quenching of CdSe nanocrystals. Talanta 67:979–983

    Article  PubMed  CAS  Google Scholar 

  9. Vane JR (1971) Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol 231:232–235

    PubMed  CAS  Google Scholar 

  10. Leena R, Jissy AK, Kumar KG, Datta AJ (2011) Mechanistic study for the facile oxidation of trimethoprim on a manganese porphyrin incorporated glassy carbon electrode. J Phys Chem C 15:21858–21864

    Google Scholar 

  11. Issac S, Kumar KG (2010) Voltammetric study of pyridine-2-aldoxime methochloride at poly(p-toluene sulfonic acid) modified glassy carbon sensor and its analytical applications. Anal Methods 2:1484–1489

    Article  CAS  Google Scholar 

  12. Joseph R, Kumar KG (2011) Electrochemical sensing of acyclovir at a gold electrode modified with 2-mercaptobenzothiazole–[5,10,15,20-tetrakis-(3-methoxy-4-hydroxyphenyl)porphyrinato]copper(II). Anal Sci 27:67–72

    Article  PubMed  CAS  Google Scholar 

  13. Oliveira RJ, Correia J, Silvestre F (2000) Severe acute hepatitis probably induced by nimesulide. Gastroenterol Clin Biol 24:592–593

    Google Scholar 

  14. Andrade RJ, Lucena MI, Fernandez MC, Gonzalez M (2000) Fatal hepatitis associated with nimesulide. J Hepatol 32:174

    Article  PubMed  CAS  Google Scholar 

  15. Balasubramaniam J (2000) Nimnesulide and neonatal kidney failure. Lancet 355:575

    Article  PubMed  CAS  Google Scholar 

  16. Schattner A, Sokolovskaya N, Cohen J (2000) Fatal hepatitis and renal failure during treatment with nimesulide. J Intern Med 247:153–155

    Article  PubMed  CAS  Google Scholar 

  17. Tursen U, Kaya TI, Kokturk A, Dusmez D (2001) Lichenoid photodermatitis associated with nimesulide. Int J Dermatol 4:767–768

    Article  Google Scholar 

  18. Mangalvedhekar SS, Gogtay NJ, Phadke AV, Gore S, Shah JM, Shah SM (2000) Adverse drug reactions postal survey-bronchial asthma and angioedema with nimesulide. J Assoc Physicians India 48:548

    PubMed  CAS  Google Scholar 

  19. Kanwar AJ, Kaur S, Thami GP (2000) Nimesulide-induced purpura. Dermatology 201:376

    Article  PubMed  CAS  Google Scholar 

  20. Chang SF, Miller AM, Ober RE (1977) Determination of an anti-inflammatory methanesulfonanilide in plasma by high-speed liquid chromatography. J Pharm Sci 66:1700–1703

    Article  PubMed  CAS  Google Scholar 

  21. Carini M, Aldini G, Stefani R, Marinello C, Facino RM (1998) Mass spectrometric characterization and HPLC determination of the main urinary metabolites of nimesulide in man. J Pharm Biomed Anal 18:201–211

    Article  PubMed  CAS  Google Scholar 

  22. Sadhana GS, Ghogare AB (1991) Simultaneous determination of chloramphenicol and benzocaine in topical formulations by high-performance liquid chromatography. J Chromatogr 542:515–520

    Article  Google Scholar 

  23. Lakshimi CSR, Reddy MN (1999) Spectrophotometric estimation of nimesulide and its formulations. Microchim Acta 132:1–6

    Article  Google Scholar 

  24. Nagaraja P, Yathirajan HS, Arunkumar HR, Vasantha RA (2002) Novel coupling reagents for the sensitive spectrophotometric determination of nimesulide in pharmaceutical preparations. J Pharm Biomed Anal 29:277–282

    Article  PubMed  CAS  Google Scholar 

  25. Zhang J, Tan X, Zhao D, Tan S, Huang Z, Mi Y, Huang Z (2010) Study of nimesulide and its determination using multiwalled carbon nanotubes modified glassy carbon electrodes. Electrochim Acta 55:2522–2526

    Article  CAS  Google Scholar 

  26. Wang C, Liu XQ, Qu Q, Yang G, Hu X (2006) Differential pulse voltammetric determination of nimesulide in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid/CNTs based on electrochemical oxidation of l-cysteine. J Pharm Biomed Anal 42:237–244

    Article  PubMed  CAS  Google Scholar 

  27. Constantinescu IC, Florea M, Arama CC, Nedelcu A, Monciu CM (2009) Assay of nimesulide by ion association titration. Farmacia 57:267–271

    CAS  Google Scholar 

  28. Callan JF, de Silva AP, Mulrooney RC, McCaughan B (2007) Luminescent sensing with quantum dots. J Incl Phenom Macrocycl Chem 58:257–262

    Article  CAS  Google Scholar 

  29. Qu L, Peng X (2002) Control of photoluminescence properties of CdSe nanocrystals in growth. J Am Chem Soc 124:2049–2055

    Article  PubMed  CAS  Google Scholar 

  30. Chen YF, Rosenweig Z (2002) Luminescent CdS quantum dots as selective ion probes. Anal Chem 74:5132–5138

    Article  PubMed  CAS  Google Scholar 

  31. Youngjin K, Robert JC, Joseph HT (2001) Gold nanoparticle-based sensing of “spectroscopically silent” heavy metal ions. Nano Lett 1:165–167

    Article  Google Scholar 

  32. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, New York

    Book  Google Scholar 

  33. Weller A (1968) Electron-transfer and complex formation in the excited state. Pure Appl Chem 16:115–123

    Article  CAS  Google Scholar 

  34. Kucur E, Riegler J, Urban GA, Nann T (2003) Determination of quantum confinement in CdSe nanocrystals by cyclic voltammetry. J Chem Phys 119:2333–2337

    Article  CAS  Google Scholar 

  35. Hyun BR, Zhong YW, Bartnik AC, Sun L, Abrun HD, Wise FW, Goodreau JD, Matthews JR, Leslie TM, Borrelli NF (2008) Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles. ACS Nano 2:2206–2212

    Article  PubMed  CAS  Google Scholar 

  36. United States Pharmacopoeia (2005) United States Pharmacopeial Convention Inc, Rockville 209

Download references

Acknowledgment

The authors would like to express their gratitude to Council of Scientific and Industrial Research (CSIR), Inter University Centre for Nano materials and Devices (IUCND) and University Grants Commission (UGC), for the award of research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnapillai Girish Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomas, D., Lonappan, L., Rajith, L. et al. Quantum Dots (QDs) Based Fluorescent Sensor for the Selective Determination of Nimesulide. J Fluoresc 23, 473–478 (2013). https://doi.org/10.1007/s10895-013-1170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1170-5

Keywords

Navigation