Skip to main content
Log in

Salicylaldehyde Phenylhydrazone: A New Highly Selective Fluorescent Lead (II) Probe

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The fluorescence intensity of salicylaldehyde phenylhydrazone (L), in 1:1 (v/v) CH3OH:H2O was enhanced by ca. 100 times with a blue shift in emission maximum, on interaction with Pb2+ ion. No enhancement in fluorescent intensity of L was observed on interaction with metal ions - Na+, K+, Ca2+, Cu2+, Ni2+, Zn2+, Cd2+ and Hg2+. This signal transduction was found to occur via photoinduced electron transfer (PET) mechanism. A 1:1 complexation between Pb2+ and L with log β = 7.86 has been proved from fluorescent and UV/Visible spectroscopic data. The detection limit of Pb2+ was calculated to be 6.3 × 10−7 M.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  2. Prodi L, Bolletta L, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  3. Yoosaf K, Ipe BI, Suresh CH, Thomas KG (2007) In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J Phys Chem C 111:12839–12847

    Article  CAS  Google Scholar 

  4. Ragan P, Turner T (2009) Working to prevent lead poisoning in children: getting the lead out. J Am Acad Phys Asst 22:40–45

    Google Scholar 

  5. Needleman HL (1992) Human lead exposure. CRC Press, Boca Raton

    Google Scholar 

  6. Florin TA, Brent TMW, Weitzman M (2005) The need for vigilance: the persistence of lead poisoning in children. Pediatrics 115:1767–1768

    Article  PubMed  Google Scholar 

  7. Garza A, Vega R, Soto E (2006) Cellular mechanisms of lead neurotoxicity. Med Sci Monit 12:RA57–RA65

    PubMed  Google Scholar 

  8. Magyar JS, Weng TC, Stern CM, Dye DF, Rous BW, Payne JC, Bridgewater BM, Mijovilovich A, Parkin G, Zaleski JM, Penner-Hahn JE, Godwin HA (2005) Reexamination of lead(II) coordination preferences in sulfur-rich sites: implications for a critical mechanism of lead poisoning. J Am Chem Soc 127:9495–9505

    Article  PubMed  CAS  Google Scholar 

  9. Abbate C, Buceti R, Munao F, Giorgianni C, Ferreri G (1995) Neurotoxicity induced by lead levels: an electrophysiological study. Int Arch Occup Environ Health 66:389–392

    Article  PubMed  CAS  Google Scholar 

  10. Manahan SE (1994) Environmental chemistry. CRC Press, Boca Raton

    Google Scholar 

  11. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  PubMed  CAS  Google Scholar 

  12. Valeur B, Leray I (2007) Ion-responsive supramolecular fluorescent systems based on multichromophoric calixarenes: a review. Inorg Chim Acta 360:765–774

    Article  CAS  Google Scholar 

  13. Jiang P, Guo Z (2004) Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors. Coord Chem Rev 248:205–229

    Article  CAS  Google Scholar 

  14. Prodi L (2005) Luminescent chemosensors: from molecules to nanoparticles. New J Chem 29:20–31

    Article  CAS  Google Scholar 

  15. Valeur B, Leray I (2000) Design principles of fluorescent molecular sensors for cation recognition. Coord Chem Rev 205:3–40

    Article  CAS  Google Scholar 

  16. Métivier R, Leray I, Valeur B (2003) A highly sensitive and selective fluorescent molecular sensor for Pb (II) based on a calix [4] arene bearing four dansyl groups. Chem Commun 8:996–997

    Article  Google Scholar 

  17. de Silva AP, Fox DB, Huxley AJM, Moody TS (2000) Combining luminescence, coordination and electron transfer for signalling purposes. Coord Chem Rev 205:41–57

    Article  Google Scholar 

  18. Zhang J, Campbell RE, Ting AY, Tisen RY (2002) Creating new fluorescent probes for cell biology. Nat Rev Mol Cell Biol 3:906–918

    Article  PubMed  CAS  Google Scholar 

  19. Yao J, Li J, Owens J, Zhong W (2011) Combing DNAzyme with single-walled carbon nanotubes for detection of Pb(II) in water. Analyst 136:764–768

    Article  PubMed  CAS  Google Scholar 

  20. Goswami P, Das DK (2012) N, N, N, N-tetradentate macrocyclic ligand based selective fluorescent sensor for zinc (II). J Fluorescence 22:1081–1085

    Article  CAS  Google Scholar 

  21. Gong Z-L, Zhao B-X, Liu W-Y, Lv H-S (2011) A new highly selective “turn-on” fluorescent sensor for zinc ion based on a pyrazoline derivative. J Photochem Photobiol A 218:6–10

    Article  CAS  Google Scholar 

  22. Goswami P, Baruah S, Das DK (2010) 2,7-dichlorofluorescein, a fluorescent sensor to detect Cd2+ over Na+, K+, Ca2+, Cu2+, Ni2+ and Zn2+. Indian J Chem A 49:1617–1620

    Google Scholar 

  23. Goswami P, Das DK (2012) A new highly sensitive and selective fluorescent cadmium sensor. J Fluorescence 22:391–395

    Article  CAS  Google Scholar 

  24. Jiang J, Liu W, Cheng J, Yang L, Jiang H, Bai D, Liu W (2012) A sensitive colorimetric and ratiometric fluorescent probe for mercury species in aqueous solution and living cells. Chem Comm 48:8371–8373

    Article  PubMed  CAS  Google Scholar 

  25. Yan F, Cao D, Wang M, Yang N, Yu Q, Dai L, Chen L (2012) A new rhodamine-based “off-on” fluorescent chemosensor for Hg(II) ion and its application in imaging Hg(II) in living cells. J Fluorescence 22:1249–1256

    Article  CAS  Google Scholar 

  26. Fan J, Peng X, Wang S, Liu X, Li H, Sun S (2012) A fluorescence turn-on sensor for Hg2+ with a simple receptor available in sulphide-rich environments. J Fluorescence 22:941–955

    Article  Google Scholar 

  27. Liu J, Yu M, Wang X-C, Zhang Z (2012) A highly selective colorimetric sensor for Hg2+ based on nitrophenyl-aminothiourea. Spectrochim Acta Part A 93:245–249

    Article  CAS  Google Scholar 

  28. Deo S, Godwin HA (2000) A selective, ratiometric fluorescent sensor for Pb2+. J Am Chem Soc 122:174–175

    Article  CAS  Google Scholar 

  29. Liu J, Yi L (2003) A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc 125:6642–6643

    Article  PubMed  CAS  Google Scholar 

  30. Hou C, Xiong Y, Fu N, Jacquot CC, Squier TC, Cao H (2011) Turn-on ratiometric fluorescent sensor for Pb2+ detection. Tetrahedron Lett 52:2692–2696

    Article  CAS  Google Scholar 

  31. Sun M, Shangguan D, Ma H, Nie L, Li X, Xiong S, Liu G, Thiemann W (2003) Simple Pb II fluorescent probe based on PbII-catalyzed hydrolysis of phosphodiester. Biopolymers 72:413–420

    Article  PubMed  CAS  Google Scholar 

  32. Aksuner N (2011) Development of a new fluorescent sensor based on a triazolo-thiadiazin derivative immobilized in polyvinyl chloride membrane for sensitive detection of lead(II) ions. Sensors Actuators B 157:162–168

    Article  CAS  Google Scholar 

  33. Ma L, Li H, Wu Y (2009) A pyrene-containing fluorescent sensor with high selectivity for lead (II) ion in water with dual illustration of ground-state dimer. Sensors Actuators B 143:25–29

    Article  Google Scholar 

  34. Kwon JY, Jang YJ, Lee YJ, Kim KM, Seo MS, Nam W, Yoon J (2005) A highly selective fluorescent chemosensor for Pb2+. J Am Chem Soc 127:10107–10111

    Article  PubMed  CAS  Google Scholar 

  35. Zapata F, Caballero A, Espinosa A, Tárraga A, Molina P (2009) Imidazole-annelated ferrocene derivatives as highly selective and sensitive multichannel chemical probes for Pb(II) cations. J Org Chem 74:4787–4796

    Article  PubMed  CAS  Google Scholar 

  36. Love BE, Jones EG (1999) The use of salicylaldehyde phenylhydrazone as an indicator for the titration of organometallic reagents. J Org Chem 64:3755–3756

    Article  PubMed  CAS  Google Scholar 

  37. Dong X, Yang Y, Sun J, Liu Z, Bi-F L (2009) Two -photonexcited fluorescent probes for calcium based on internal chargetransfer. Chem Commun 26:3883–3885

    Article  Google Scholar 

  38. Ashokkumar P, Ramakrishnan VT, Ramamurthy P (2011) Photoinduced Electron Transfer (PET) based Zn2+ fluorescent probe: transformation of turn-on sensors into ratiometric ones with dual emission in acetonitrile. J Phys Chem A 2011:14292–14299

    Article  Google Scholar 

  39. Bryan AJ, de Silva AP, Rupasinghe RADD, Sadayake KRAS (1989) Photo-induced electron transfer as a general design logic for fluorescent molecular sensors for cations. Biosensors 4:169–179

    Article  CAS  Google Scholar 

  40. Goldstein GW (1993) Evidence that lead acts as a calcium substitute in secondmessenger metabolism. Neurotoxicology 14:97–102

    PubMed  CAS  Google Scholar 

  41. Kulatilleke CP, Silva SA, Eliav Y (2006) A coumarin based fluorescent photoinduced electron transfer cation sensor. Polyhedron 25:2593–2596

    Article  CAS  Google Scholar 

Download references

Acknowledgment

UGC, New Delhi and DST, New Delhi are thanked for financial support to the Department. PG thanks the former for fellowship under RFSMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diganta Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D.K., Goswami, P. & Sarma, S. Salicylaldehyde Phenylhydrazone: A New Highly Selective Fluorescent Lead (II) Probe. J Fluoresc 23, 503–508 (2013). https://doi.org/10.1007/s10895-013-1167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-013-1167-0

Keywords

Navigation