Skip to main content
Log in

Calix Receptor Edifice; Scrupulous Turn Off Fluorescent Sensor for Fe(III), Co(II) and Cu(II)

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Novel Supramolecular fluorescence receptor derived from calix-system i.e. calix[4]resorcinarene bearing dansylchloride as fluorophore was designed and synthesized. The compound was purified by column chromatography and characterized by elemental analysis, NMR and Mass spectroscopy. Tetradansylated calix[4] resorcinarene (TDCR) shows a boat conformation with C2v symmetry. The complexation behaviour of metal cations [Ag(I), Cd(II), Co(II), Fe(III), Hg(II), Cu(II), Pb(II), Zn(II), U(VI) (1 × 10-4 M)] with tetra dansylated calix[4]resorcinarene (1 × 10-6 M) was studied by spectophotometry and spectrofluorometry. Red shift in the absorption spectra led us to conclude that there is strong complexation Fe(III), Co(II) and Cu(II) with TDCR. These metal cations also produce quenching with red shifts in the emission spectra. The maximum quenching in emission intensity was observed in the case of Fe(III) and its binding constant was also found to be significantly higher than that of Co(II) and Cu(II). Quantum yield of metal complexes of Fe(III) was found to be lower in comparison with Co(II) and Cu(II) complexes. Stern Volmer analysis indicates that the mechanism of fluorescence quenching is either purely dynamic, or purely static.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Atood JL, Davies JED, MacNicol DD, Vogetle F (1996) Comprehensive Supramolecular Chemistry, ed.; Elsevier: Exeter

  2. De Silva AP, Gunaratne HQN, Gunnlaugsson T, Huxley AJM, McCoy CP, Rademacher JT, Rice TE (1997) Signaling recognition events with fluorescent sensors and switches. Chem Rev 97:1515–1566

    Article  PubMed  Google Scholar 

  3. Lee SH, Kim SH, Kim SK, Jung JH, Kim JS (2005) Bifunctional fluorescent Calix[4]arene chemosensor for both a cation and an anion. J Org Chem 70:1463–1466

    Article  PubMed  CAS  Google Scholar 

  4. Hamdi A, Kim SH, Abidi R, Thuery P, Kim JS, Vicens J (2009) A dipyrenyl calixazacrown chemosensor for Mg2+. Tetrahedron 65:2818–2823

    Article  CAS  Google Scholar 

  5. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. PRL 96:113002-1-4

    Article  Google Scholar 

  6. Lakowicz JR, Weber G (1973) Quenching of fluorescence by oxygen. Probe for structural fluctuations in macromolecules. Biochemistry 12(21):4161–4170

    Article  PubMed  CAS  Google Scholar 

  7. Guo X, Qian X, Jia L (2004) A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. J Am Chem Soc 126(8):2272–2273

    Article  PubMed  CAS  Google Scholar 

  8. Aragoni MC, Arca M, Bencini A, Blake AJ, Caltagirone C, Danesi A, Devillanova FA, Garau A, Gelbrich T, Isaia F, Lippolis V, Hursthouse MB, Valtancoli B, Wilson C (2007) New fluorescent chemosensors for heavy metal ions based on functionalized pendant arm derivatives of 7-anthracenylmethyl-1,4,10-trioxa-7,13-diazacyclopentadecane. Inorg Chem 46:8088–8097

    Article  PubMed  CAS  Google Scholar 

  9. Misra A, Shahid M, Srivastava P, Dwivedi P (2010) Fluorescent chemosensor: recognition of metal ions in aqueous medium by fluorescence quenching. J Inclusion Phenom Macrocylic Chem 69:119–129

    Article  Google Scholar 

  10. Chen QY, Chen CF (2005) A new Hg2+ selective fluorescent sensor based on a dansyl amide-armed calix[4]-aza-crown. Tetrahedron Lett 46:165–168

    Article  Google Scholar 

  11. Talanova GG, Elkarim NSA, Talanov VS, Bartsch RA (1999) A calixarene-based fluorogenic reagent for selective mercury(II) recognition. Anal Chem 71:3106–13109

    Article  PubMed  CAS  Google Scholar 

  12. Talanova GG, Roper ED, Buie NM, Gorbunova MG, Bartsch RA, Talanov VS (2005) Novel fluorogenic calix[4]arene-bis(crown-6-ether) for selective recognition of thallium(I), Chem. Commun. 5673–5675

  13. Schonefeld K, Ludwig R, Feller KH (2006) Fluorescence studies of host–guest interaction of a dansyl amide labelled Calix[6]arene. J Fluoresc 16:449–454

    Article  PubMed  CAS  Google Scholar 

  14. Fusi V, Giorgi L, Micheloni M (2012) New fluorescent chemosensors for metal ions in solution Mauro Formica. Coord Chem Rev 256:170–192

    Article  Google Scholar 

  15. David Gutsche C (2008) Calixarenes: an introduction, 261-276, Ed. RSC publication

  16. Kim JS, Lee SY, Yoon J, Vicens J (2009) Hyperbranched calixarenes: synthesis and applications as fluorescent probes. Chem Commun 4791–4802

  17. Kim JS, Quang DT (2007) Calixarene-derived fluorescent probes. Chem Rev 107(9):3780–3799

    Article  PubMed  CAS  Google Scholar 

  18. Sahin O, Yilmaz M (2011) Synthesis and fluorescence sensing properties of novel pyrene-armed calix[4]arene derivatives. Tetrahedron 67:3501–3508

    Article  CAS  Google Scholar 

  19. Roberts BA, Cave GWV, Raston CL, Scott JL (2001) Solvent-free synthesis of calix[4]resorcinarenes. Green Chemistry 3:280–284

    Article  CAS  Google Scholar 

  20. Mclldowie MJ, Mocerino M, Ogden MI (2010) A brief review of C-symmetric calixarenes and resorcinarenes. Supramol Chem 22(1):13–39

    Article  Google Scholar 

  21. Pandey S, Ali M, Bishnoi A, Azam A, Pandey S, Chawla HM (2008) Quenching of pyrene fluorescence by Calix[4]arene and Calix[4]resorcinarenes. J Fluoresc 18:533–539

    Article  PubMed  CAS  Google Scholar 

  22. Fix OK, Kowdley KV (2008) Hereditary hemochromatosis. Minerva Med 99:605–617

    PubMed  CAS  Google Scholar 

  23. Li CY, Zhang XB, Jin Z, Han R, Shen GL, Yu RQ (2006) A fluorescent chemosensor for cobalt ions based on a multi-substituted phenol-ruthenium(II) tris(bipyridine) complex. Anal Chim Acta 580:143–148

    Article  PubMed  CAS  Google Scholar 

  24. Santander PJ, Kajiwara Y, Williams HJ, Scott AI (2006) Structural characterization of novel cobalt corrinoids synthesized by enzymes of the vitamin B12 anaerobic pathway. Bioorg Med Chem 14:724–731

    Article  PubMed  CAS  Google Scholar 

  25. Frank A, McPartlin J, Danielsson R (2004) Nova Scotia moose mystery-a moose sickness related to cobalt- and vitamin B12 deficiency. Sci Total Environ 318:89–100

    Article  PubMed  CAS  Google Scholar 

  26. Al-Habsi K, Johnson EH, Kadim IT, Srikandakumar A, Annamalai K, Al-Busaidy R, Mahgoub O (2007) Effects of low concentrations of dietary cobalt on liveweight gains, haematology, serum vitamin B(12) and biochemistry of Omani goats. Vet J 173:131–137

    Article  PubMed  CAS  Google Scholar 

  27. Da Silva JJRF, Williams RJP (1991) The biological chemistry of the elements. Clarendon, Oxford

    Google Scholar 

  28. Hogberg AGS (1980) Stereoselective synthesis and DNMR study of two 1,8,15,22-Tetraphenyl [14] metacyclophan-3,5,10,12,17,19,24,26-octols. J Am Chem Soc 102:6046–6050

    Article  Google Scholar 

  29. Hogberg AGS (1980) Two steroisomeric macrocyclic resorcinol-acetaldehyde condensation products. J Org Chem 45:4498–4500

    Article  Google Scholar 

  30. Timmerman P, Verboom W, Reinhoudt DN (1996) Resorcinarenes. Tetrahedron 52:2663–2704

    Article  CAS  Google Scholar 

  31. Beyeh NK, Aumanen J, Ahman A, Luostarinen M, Mansikkamaki H, Nissinen M, Tommola JK, Rissanen K (2007) Dansylated resorcinarenes. New J Chem 31:370–376

    Article  Google Scholar 

  32. Li YH, Chan LM, Tyer L, Moody RT, Himel CM, Hercules DM (1975) Solvent effects on the fluorescence of 1-(dimethylamino)-5-naphthalenesulfonic acid and related compounds. J Am Chem Soc 97:3118–3126

    Article  CAS  Google Scholar 

  33. Prodi L, Bolletta F, Montalti M, Zaccheroni N (2000) Luminescent chemosensors for transition metal ions. Coord Chem Rev 205:59–83

    Article  CAS  Google Scholar 

  34. Talanova GG, Talanov VS (2010) Dansyl-containing fluorogenic calixarenes as optical chemosensors of hazardous metal ions: a mini-review. Supramol Chem 22:838–852

    Article  CAS  Google Scholar 

  35. Patra S, Paul P (2009) Synthesis, characterization, electrochemistry and ion-binding studies of ruthenium(II) bipyridine receptor molecules containing calix[4]arene-azacrown as ionophore. Dalton Trans 40:8683–8695

    Article  PubMed  Google Scholar 

  36. Boricha VP, Patra S, Chouhan YS, Sanavada P, Suresh E, Paul P (2009) Synthesis, characterization, electrochemistry and ion-binding studies of ruthenium(II) and rhenium(I) bipyrydyl crown ether receptor molecules, Eur J Inorg Chem 1256–1267

  37. Maree D, Nyokong T, Suhling K, Phillips D (2002) Effects of axial ligands on the photophysical properties of silicon octaphenoxyphthalocyanine. J Porphyr Phthalocyanine 6:373–376

    Article  CAS  Google Scholar 

  38. Fery-Forgues S, Lavabre D (1999) Are fluorescence quantum yields so tricky to measure? A demonstration using familiar stationery products. J Chem Educ 76:1260–1264

    Article  CAS  Google Scholar 

  39. El-Sedik M, Almonasy N, Nepras M, Bures F, Dvorak M, Michl M, Cermak J, Hrdina R (2012) Synthesis, absorption and fluorescence properties of N-triazinyl derivatives of 2-aminoanthracene. Dyes Pigments 92:1126–1131

    Article  CAS  Google Scholar 

  40. Wurth C, Gonzalez MG, Niessner R, Panne U, Haisch C, Genger UR (2012) Determination of the absolute fluorescence quantum yield of rhodamine 6 G with optical and photoacoustic methods – Providing the basis for fluorescence quantum yield standards. Talanta 90:30–37

    Article  PubMed  Google Scholar 

  41. Murphy CB, Zhang Y, Troxler T, Ferry V, Martin JJ, Jones WE (2004) Probing Forster and Dexter energy-transfer mechanisms in fluorescent conjugated polymer chemosensors. J Phys Chem B 108:1537–1543

    Article  CAS  Google Scholar 

  42. Larsen RW, Helms MK, Everett WR, Jameson DM (1999) Ground- and excited-state characterization of an electrostatic complex between tetrakis(4-sulfanato-phenyl)porphyrin and 16-pyrimidinium crown-4. Photochem Photobiol 69:429–434

    CAS  Google Scholar 

  43. Michon J, Frelon S, Garnier C, Coppin F (2010) Determinations of Uranium(VI) Binding Properties with some Metalloproteins (Transferrin, Albumin, Metallothionein and Ferritin) by Fluorescence Quenching. J Fluoresc 20(2):581–590

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance provided by University Grant Commission (UGC), New Delhi. The authors also acknowledge CDRI (Lucknow), GFSU (Gandhinagar) and CSMCRI (Bhavanagar) for providing instrumental facilities and INFLIBNET, Ahmedabad, for e-journals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinod K. Jain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Fig. 7. Quenching Comparison of metal ions (Fe(III), Co(II) and Cu(II)) with their intensity. Fig. 8. Graph of % quenching of TDCR with various metal ions. Fig. 9 Color changes of TDCR in Methanol (20μM) in the presence of 20 eq. of metal ions. Fig. 10 Graphical abstract. Fig. 11. NMR Spectra of ligand CR and TDCR. Fig. 12 Mass Spectra of ligand CR and TDCR. (PDF 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, K.D., Gupte, H.S., Makwana, B.A. et al. Calix Receptor Edifice; Scrupulous Turn Off Fluorescent Sensor for Fe(III), Co(II) and Cu(II). J Fluoresc 22, 1493–1500 (2012). https://doi.org/10.1007/s10895-012-1086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1086-5

Keywords

Navigation