Skip to main content
Log in

Two-Photon Activated Two-Photon Fluorescence and Binding of Azidocoumarin in a Gelatin Matrix

  • ORIGINAL PAPER
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

We study the creation of fluorescence patterns inside a gelatin gel by way of two-photon photoactivation of 7-azido-4-trifluoromethyl-1,2-benzopyrone (azidocomarin 151) contained in the gel matrix. As ultrafast light pulses are focused into the gel, onset of two-photon fluorescence, highly nonlinear in the applied optical power, is observed as azidocoumarin is converted into a fluorescent dye that binds to the gelatin. We fit the time dependence of the fluorescence to a model that incorporates the competition between coumarin photoactivation and photobleaching as well as the gradual degradation of the gel when it is exposed to the high intensity laser light. The model predicts that the initial rate of fluorescence onset should scale as the P 4, where P is laser power, while the signal at long exposure time should scale as P 3/2. The observed exponents are 4.18 and 1.34, respectively. The model allows us to estimate the cross section and quantum yield of two-photon induced photobleaching of azidocoumarin 151. The numerous technical uses of gelatin and the collagen from which it derives in areas ranging from photography to tissue engineering provide possible applications for the techniques described in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  PubMed  CAS  Google Scholar 

  2. Hess ST, Girirajan TPK, Mason MD (2006) Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J 91(11):4258–4272. doi:10.1529/biophysj.106.091116

    Article  PubMed  CAS  Google Scholar 

  3. Zhuang XW, Rust MJ, Bates M (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–795. doi:10.1038/nmeth929

    Article  PubMed  Google Scholar 

  4. Lukyanov KA, Chudakov DM, Lukyanov S, Verkhusha VV (2005) Photoactivatable fluorescent proteins. Nat Rev Mol Cell Biol 6(11):885–891 doi:10.1038/nrm1741

    Article  PubMed  CAS  Google Scholar 

  5. Patterson GH (2011) Highlights of the optical highlighter fluorescent proteins. J Microsc 243(1):1–7. doi:10.1111/j.1365-2818.2011.03505.x

    Article  PubMed  CAS  Google Scholar 

  6. Tinnefeld P, Vogelsang J, Steinhauer C, Forthmann C, Stein IH, Person-Skegro B, Cordes T (2010) Make them blink: probes for super-resolution microscopy. Chemphyschem 11(12):2475–2490. doi:10.1002/cphc.201000189

    Article  PubMed  Google Scholar 

  7. Warther D, Gug S, Specht A, Bolze F, Nicoud JF, Mourot A, Goeldner M (2010) Two-photon uncaging: new prospects in neuroscience and cellular biology. Bioorg Med Chem 18(22):7753–7758. doi:10.1016/j.bmc.2010.04.084

    Article  PubMed  CAS  Google Scholar 

  8. Han G, Mokari T, Ajo-Franklin C, Cohen BE (2008) Caged quantum dots. J Am Chem Soc 130(47):15811–15813. doi:10.1021/ja804948s

    Article  PubMed  CAS  Google Scholar 

  9. Lord SJ, Lee HLD, Samuel R, Weber R, Liu N, Conley NR, Thompson MA, Twieg RJ, Moerner WE (2010) Azido push-pull fluorogens photoactivate to produce bright fluorescent labels. J Phys Chem B 114(45):14157–14167. doi:10.1021/jp907080r

    Article  PubMed  CAS  Google Scholar 

  10. Thevenin BJM, Shahrokh Z, Williard RL, Fujimoto EK, Kang JJ, Ikemoto N, Shohet SB (1992) A novel photoactivatable cross-linker for the functionally-directed region-specific fluorescent labeling of proteins. Eur J Biochem 206(2):471–477 doi:10.1111/j.1432-1033.1992.tb16949.x

    Article  PubMed  CAS  Google Scholar 

  11. Vaziri A, Tang JY, Shroff H, Shank CV (2008) Multilayer three-dimensional super resolution imaging of thick biological samples. Proc Natl Acad Sci USA 105(51):20221–20226. doi:10.1073/pnas.0810636105

    Article  PubMed  CAS  Google Scholar 

  12. Zhuang XW, Huang B, Wang WQ, Bates M (2008) Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319(5864):810–813. doi:10.1126/science.1153529

    Article  PubMed  Google Scholar 

  13. Juette MF, Gould TJ, Lessard MD, Mlodzianoski MJ, Nagpure BS, Bennett BT, Hess ST, Bewersdorf J (2008) Three-dimensional sub-100 nm resolution fluorescence microscopy of thick samples. Nat Methods 5(6):527–529 doi:10.1038/nmeth.1211

    Article  PubMed  CAS  Google Scholar 

  14. Schmidt R, Wurm CA, Jakobs S, Engelhardt J, Egner A, Hell SW (2008) Spherical nanosized focal spot unravels the interior of cells. Nat Methods 5(6):539–544 doi:10.1038/nmeth.1214

    Article  PubMed  CAS  Google Scholar 

  15. LaFratta CN, Fourkas JT, Baldacchini T, Farrer RA (2007) Multiphoton fabrication. Angew Chem Int Ed 46(33):6238–6258 doi:10.1002/anie.200603995

    Article  CAS  Google Scholar 

  16. Zhou WH, Kuebler SM, Braun KL, Yu TY, Cammack JK, Ober CK, Perry JW, Marder SR (2002) An efficient two-photon-generated photoacid applied to positive-tone 3D microfabrication. Science 296(5570):1106–1109 doi:10.1126/science.296.5570.1106

    Article  PubMed  CAS  Google Scholar 

  17. Allonas X, Fouassier JP, Kaji M, Miyasaka M, Hidaka T (2001) Two and three component photoinitiating systems based on coumarin derivatives. Polymer 42(18):7627–7634 doi:10.1016/S0032-3861(01)00275-0

    Article  CAS  Google Scholar 

  18. Monroe BM, Weed GC (1993) Photoinitiators for free-radical-initiated photoimaging systems. Chem Rev 93(1):435–448 doi:10.1021/cr00017a019

    Article  CAS  Google Scholar 

  19. Wu SK, Zhang JK, Fouassier JP, Burr D (1989) A transient study on the ketocoumarin derivatives II. The triplet quenching of ketocoumarin by different monomers and amines. Photogr Sci Photochem 2:47–54

    Google Scholar 

  20. Wang T, Zhao YX, Shi MQ, Wu FP (2007) The synthesis of novel coumarin dyes and the study of their photoreaction properties. Dye Pigment 75(1):104–110. doi:10.1016/j.dyepig.2006.04.019

    Article  CAS  Google Scholar 

  21. Di Lullo GA, Sweeney SM, Korkko J, Ala-Kokko L, San Antonio JD (2002) Mapping the ligand-binding sites and disease-associated mutations on the most abundant protein in the human, type I collagen. J Biol Chem 277(6):4223–4231. doi:10.1074/jbc.M110709200

    Article  PubMed  Google Scholar 

  22. Lee SJ, Liu J, Oh SH, Soker S, Atala A, Yoo JJ (2008) Development of a composite vascular scaffolding system that withstands physiological vascular conditions. Biomaterials 29(19):2891–2898. doi:10.1016/j.biomaterials.2008.03.032

    Article  PubMed  CAS  Google Scholar 

  23. Schnapp KA, Poe R, Leyva E, Soundararajan N, Platz MS (1993) Exploratory photochemistry of fluorinated aryl azides - implications for the design of photoaffinity-labeling reagents. Bioconjug Chem 4(2):172–177 doi:10.1021/bc00020a01

    Article  PubMed  CAS  Google Scholar 

  24. Feng KS, Mahdavianary F, Partch RE, Li YZ (1995) Photochemical reactions of azidocoumarins. Photochem Photobiol 62(5):813–817 doi:10.1111/j.1751-1097.1995.tb09141.x

    Article  PubMed  CAS  Google Scholar 

  25. Barral K, Moorhouse AD, Moses JE (2007) Efficient conversion of aromatic amines into azides: a one-pot synthesis of triazole linkages. Org Lett 9(9):1809–1811 doi:10.1021/ol070527h

    Article  PubMed  CAS  Google Scholar 

  26. Tanaka T, Swislow G, Ohmine I (1979) Phase-separation and gelation in gelatin gels. Phys Rev Lett 42(23):1556–1559 doi:10.1103/PhysRevLett.42.1556

    Article  CAS  Google Scholar 

  27. Friedman L (1930) Diffusion of non-electrolytes in gelatin gels. J Am Chem Soc 52(4):1305–1310. doi:10.1021/ja01367a002

    Article  CAS  Google Scholar 

  28. Fischer A, Cremer C, Stelzer EHK (1995) Fluorescence of coumarins and xanthenes after 2-photon absorption with a pulsed titanium-sapphire laser. Appl Opt 34(12):1989–2003 doi:10.1364/AO.34.001989

    Article  PubMed  CAS  Google Scholar 

  29. Eggeling C, Widengren J, Rigler R, Seidel CAM (1998) Photobleaching of fluorescent dyes under conditions used for single-molecule detection: evidence of two-step photolysis. Anal Chem 70(13):2651–2659 doi:10.1021/ac980027p

    Article  PubMed  CAS  Google Scholar 

  30. Sprague BL, Pego RL, Stavreva DA, McNally JG (2004) Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys J 86(6):3473–3495. doi:10.1529/biophysj.103.026765

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by a grant from the National Science Foundation (agreement CBET-0756693), the Institute for Critical Technology and Applied Science (ICTAS) and by a grant from the Thomas F. Jeffress and Kate M. Jeffress Memorial Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hans D. Robinson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoianov, S.V., Robinson, H.D. Two-Photon Activated Two-Photon Fluorescence and Binding of Azidocoumarin in a Gelatin Matrix. J Fluoresc 22, 1291–1300 (2012). https://doi.org/10.1007/s10895-012-1071-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1071-z

Keywords

Navigation