Skip to main content
Log in

A Highly Sensitive Fluorescent Probe for HClO and Its Application in Live Cell Imaging

  • SHORT COMMUNICATION
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A new rhodamine-based probe 1 was designed and synthesized as a new fluorescent molecular probe for HClO in PBS buffer at physiological condition. The free probe 1 almost nonfluorescence, however, a drastic enhancement of fluorescence intensity was observed in the presence of HClO. The new probe 1 exhibits good sensitivity and selectivity for HClO over other reactive oxygen and/or nitrogen species in PBS buffer, and the probe was successfully applied to image endogeneous HClO in the living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Henderson JP, Byun J, Heinecke JW (1999) Molecular chlorine generated by the myeloperoxidase-hydrogen peroxide-chloride system of phagocytes produces 5-chlorocytosine in bacterial RNA. J Biol Chem 274:33440–33448

    Article  PubMed  CAS  Google Scholar 

  2. Mainnemare A, Megarbane B, Soueidan A, Daniel A, Chapple ILC (2004) Hypochlorous acid and taurine-N-monochloramine in periodontal diseases. J Dent Res 83(11):823–831

    Article  PubMed  CAS  Google Scholar 

  3. Hidalgo E, Bartolome R, Dominguez C (2002) Cytotoxicity mechanisms of sodium hypochlorite in cultured human dermal fibroblasts and its bactericidal effectiveness. Chem Biol Interact 139(3):265–282

    Article  PubMed  CAS  Google Scholar 

  4. O’Brien PJ (2000) Peroxidases. Chem Biol Interact 129:113–139

    Article  PubMed  Google Scholar 

  5. Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  CAS  Google Scholar 

  6. Dukan S, Dadon S, Smulski DR, Belkin S (1996) Hypochlorous acid activates the heat shock and soxRS systems of Escherichia coli. Appl Environ Microbiol 62(11):4003–4008

    PubMed  CAS  Google Scholar 

  7. SchindhelmRK ZLP, Teerlink T (2009) Myeloperoxidase: a useful biomarker for cardiovascular disease risk stratification? Clin Chem 55:1462–1470

    Article  Google Scholar 

  8. Ordeig O, Mas R, Gonzalo J, Campo FJD, Muñoz FJ, de Haroet C (2005) Continuous detection of hypochlorous acid/hypochlorite for water quality monitoring and control. Electroanalysis 17:1641–1648

    Article  CAS  Google Scholar 

  9. Soldatkin AP, Gorchkov DV, Martelet C, Renault NJ (1997) New enzyme potentiometric sensor for hypochlorite species detection. Sens Actuat B-Chem 43:99–104

    Article  Google Scholar 

  10. Soto NO, Horstkotte B, March JG, Martin VC (2008) An environmental friendly method for the automatic determination of hypochlorite in commercial products using multisyringe flow injection analysis. Anal Chim Acta 611:182

    Article  PubMed  Google Scholar 

  11. Claver JB, Miron M, Capitan V (2004) Determination of hypochlorite in water using a chemiluminescent test strip. Anal Chim Acta 522:267–273

    Article  Google Scholar 

  12. Chen X, Tian X, Shin I, Yoon J (2011) Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chem Soc Rev 40:4783–4804

    Article  PubMed  CAS  Google Scholar 

  13. Kim TI, Park S, Choi Y, Kim Y (2011) A BODIPY-based probe for the selective detection of hypochlorous acid in living cells. Chem Asian J 6:1358–1361

    Article  PubMed  CAS  Google Scholar 

  14. Shepherd J, Hilderbrand SA, Libby P (2007) A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem Biol 14:1221–1231

    Article  PubMed  CAS  Google Scholar 

  15. Chen X, Wang X, Wang S, Shi W, Wang K, Ma H (2008) A highly selec-tive and sensitive fluorescence probe for the hypochlorite. Chem Eur J 14:4719–4724

    Article  PubMed  CAS  Google Scholar 

  16. Shi J, Li Q, Zhang X, Peng M, Qin J, Li Z (2011) Simple triphenylamine-based luminophore as a hypochlorite chemosensor. Sens Actuat B-Chem 145:583–587

    Article  Google Scholar 

  17. Kenmoku S, Urano Y, Kojima H, Nagano T (2007) Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis. J Am Chem Soc 129:7313–7318

    Article  PubMed  CAS  Google Scholar 

  18. Yuan L, Lin W, Yang Y, Chen H (2012) A unique class of near-infrared functional fluorescent dyes with carboxylic-acid-modulated fluorescence ON/OFF switching: rational design, synthesis, optical properties, theoretical calculations, and applications for fluorescence imaging in living animals. J Am Chem Soc 134:1200–1211

    Article  PubMed  CAS  Google Scholar 

  19. Panizzi P, Nahrendorf M, Wildgruber M, Waterman P, Figueiredo JL, Aikawa E, McCarthy J, Weissleder R, Hilderbrand SA (2009) Oxazine conjugatednanoparticle detects in vivo hypochlorous acid and peroxynitrite generation. J Am Chem Soc 131:15739–15744

    Article  PubMed  CAS  Google Scholar 

  20. Hwang J, Choi MG, Bae J, Chang SK (2011) Signaling of hypochlorous acid by selective deprotection of dithiolane. Org Biomol Chem 9:7011–7015

    Article  PubMed  CAS  Google Scholar 

  21. Sun ZN, Tam PKH, Yang D (2008) A highly specific BODIPY-based fluorescent probe for the detection of hypochlorous acid. Org Lett 10(11):2171–2174

    Article  PubMed  CAS  Google Scholar 

  22. Yang YK, Cho HJ, Lee J, Shin I, Tae J (2009) A rhodamine−hydroxamic acid-based fluorescent probe for hypochlorous acid and its applications to biological imagings. Org Lett 11(4):859–861

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Z, Zheng Y, Hang W, Yan X, Zhao Y (2011) Sensitive and selective off–on rhodamine hydrazide fluorescent chemosensor for hypochlorous acid detection and bioimaging. Talanta 85:779–786

    Article  PubMed  CAS  Google Scholar 

  24. Zhan XQ, Yan JH, Sua JH, Wang YC, He J, Wan SY, Zheng H, Xu JG (2010) Thiospirolactone as a recognition site: rhodamine B-based fluorescent probe for imaging hypochlorous acid generated in human neutrophile cells. Sens Actuat B-Chem 150:774–780

    Article  Google Scholar 

  25. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    Article  PubMed  CAS  Google Scholar 

  26. Chen X, Pradhan T, Wang F, Kim JS, Yoon J (2011) Fluorescent chemosensors based on spiroring-opening of xanthenes and related derivatives. Chem Rev. doi:10.1021/cr200201z

  27. Kumar M, Kumar N, Bhalla V, Sharma PR, Kaur T (2012) Highly selective fluorescence turn-on chemodosimeter based on rhodamine for nanomolar detection of copper ions. Org Lett 14(1):406–409

    Article  PubMed  CAS  Google Scholar 

  28. Li J, Hu Q, Yu X, Zeng Y, Cao C, Liu X, Guo J, Pan Z (2011) A novel rhodamine-benzimidazole conjugate as a highly selective turn-on fluorescent probe for Fe3+. J Fluoresc 21(5):2005–2013

    Article  PubMed  CAS  Google Scholar 

  29. Chatterjee A, Santra M, Won N, Kim S, Kim JK, Kim SB, Ahn KH (2009) Selective fluorogenic and chromogenic probe for detection of silver ions and silver nanoparticles in aqueous media. J Am Chem Soc 131(6):2040–2041

    Article  PubMed  CAS  Google Scholar 

  30. Chen X, Hong H, Han R, Zhang D, Ye Y, Zhao YF (2012) A new bis(rhodamine)-based fluorescent chemosensor for Fe3+. J Fluoresc. doi:10.1007/s10895-011-1022-0

  31. Sikdar A, Panja SS, Biswas P, Roy S (2012) A rhodamine-based dual chemosensor for Cu(II) and Fe(III). J Fluoresc 22(1):443–450

    Article  PubMed  CAS  Google Scholar 

  32. Yuan L, Lin W, Xie Y, Chen B, Song J (2011) Development of a ratiometric fluorescent sensor for ratiometric imaging of endogenously produced nitric oxide in macrophage cells. Chem Commun 47:9372–9374

    Article  CAS  Google Scholar 

  33. Gazda M, Margerum DW (1994) Reactions of monochloramine with bromine, tribromide, hypobromous acid and hypobromite: formation of bromochloramines. Inorg Chem 33(11):118–123

    Article  CAS  Google Scholar 

  34. Aubry JM, Cazin B, Duprat F (1989) Chemical sources of singlet oxygen. 3. Peroxidation of water-soluble singlet oxygen carriers with the hydrogen peroxide-molybdate system. J Org Chem 54:726–728

    Article  CAS  Google Scholar 

  35. Yang YK, Yook KJ, Tae J (2005) A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media. J Am Chem Soc 127(48):16760–16761

    Article  PubMed  CAS  Google Scholar 

  36. Magde D, Rojas GE, Seybold P (1999) Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem Photobiol 70(5):737–744

    Article  CAS  Google Scholar 

  37. Muijsers RBR, van den Worm E, Folkerts G, Beukelman CJ, Koster AS, Postma DS, Nijkamp FP (2000) Apocynin inhibits peroxynitrite formation by murine macrophages. Br J Pharmacol 130:932–936

    Article  PubMed  CAS  Google Scholar 

  38. Salonen T, Sareila O, Jalonen U, Kankaanranta H, Tuominen R, Moilanen E (2006) Inhibition of classical PKC isoenzymes downregulates STAT1 activation and iNOS expression in LPS-treated murine J774 macrophages. Br J Pharmacol 147(7):790–799

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science Research Foundation of Central South University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zuo-Jun Li or Shi-Kun Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuo, QP., Li, ZJ., Hu, YH. et al. A Highly Sensitive Fluorescent Probe for HClO and Its Application in Live Cell Imaging. J Fluoresc 22, 1201–1207 (2012). https://doi.org/10.1007/s10895-012-1067-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-012-1067-8

Keywords

Navigation