Skip to main content
Log in

Polarity Assessment of Thermoresponsive Poly(NIPAM-co-NtBA) Copolymer Films Using Fluorescence Methods

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The in-situ, non-contact, and non-destructive measurement of the physicochemical properties such as the polarity of thin, hydrophilic polymer films is desirable in many areas of polymer science. Polarity is a complex factor and encompasses a range of non-covalent interactions including dipolarity/polarizability and hydrogen bonding. A polarity measurement method based on fluorescence would be ideal, but the key challenge is to identify suitable probes which can accurately measure specific polarity related parameters. In this manuscript we assess a variety of fluorophores for measuring the polarity of a series of relatively hydrophilic, thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamide (NIPAM/NtBA) copolymers. The emission properties of both pyrene and 3-Hydroxyflavone (3-HF) based fluorophores were measured in dry polymer films. In the case of pyrene, a relatively weak, linear relationship between polymer composition and the ratio of the first to the third vibronic band of the emission spectrum (I1/I3) is observed, but pyrene emission is very sensitive to temperature and thus not suitable for robust polarity measurements. The 3-HF fluorophores which can undergo an excited-state intramolecular proton transfer (ESIPT) reaction have a dual band fluorescence emission that exhibits strong solvatochromism. Here we used 4′-diethylamino-3-hydroxyflavone (FE), 5,6-benzo-4′-diethylamino-3-hydroxyflavone (BFE), and 4´-diethylamino-3-hydroxy-7-methoxyflavone (MFE). The log ratio of the dual band fluorescence emission (log (IN*/IT*)) of 3-HF doped, dry, NIPAM-NtBA copolymer films were found to depend linearly on copolymer composition, with increasing hydrophobicity (greater NtBA fraction) leading to a decrease in the value of log (IN*/IT*). However, the ESIPT process in the polymer matrix was found to be irreversible, non-equilibrated and occurs over a much longer timescale in comparison to the results previously reported for liquid solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bult H (2000) Restenosis: a challenge for pharmacology. Trends Pharmacol Sci 21(7):274–279

    Article  CAS  PubMed  Google Scholar 

  2. Lewis AL, Tolhurst LA, Stratford PW (2002) Analysis of a phosphorylcholine-based polymer coating on a coronary stent pre-and post-implantation. Biomaterials 23(7):1697–1706

    Article  CAS  PubMed  Google Scholar 

  3. Paley MS, McGill RA, Howard SC, Wallace SE, Harris JM (1990) Solvatochromism—a new method for polymer characterization. Macromolecules 23(21):4557–4564

    Article  CAS  Google Scholar 

  4. Spange S, Vilsmeier E, Fischer K, Reuter A, Prause S, Zimmermann Y, Schmidt C (2000) Empirical polarity parameters for various macromolecular and related materials. Macromol Rap Commun 21(10):643–649

    Article  CAS  Google Scholar 

  5. Klymchenko AS, Ozturk T, Pivovarenko VG, Demchenko AP (2001) A 3-hydroxychromone with dramatically improved fluorescence properties. Tetrahedron Lett 42(45):7967–7970

    Article  CAS  Google Scholar 

  6. Klymchenko AS, Pivovarenko VG, Ozturk T, Demchenko AP (2003) Modulation of the solvent-dependent dual emission in 3-hydroxychromones by substituents. New J Chem 27(9):1336–1343

    Article  CAS  Google Scholar 

  7. Klymchenko AS, Demchenko AP (2003) Multiparametric probing of intermolecular interactions with fluorescent dye exhibiting excited state intramolecular proton transfer. Phys Chem Chem Phys 5(3):461–468

    Article  CAS  Google Scholar 

  8. Chou PT, Martinez ML, Clements JH (1993) Reversal of excitation behavior of proton-transfer vs. charge-transfer by dielectric perturbation of electronic manifolds. J Phys Chem 97(11):2618–2622

    Article  CAS  Google Scholar 

  9. Klymchenko AS, Demchenko AP (2002) Electrochromic Modulation of Excited-State Intramolecular Proton Transfer: the New Principle in Design of Fluorescence Sensors. J Am Chem Soc 124(41):12372–12379

    Article  CAS  PubMed  Google Scholar 

  10. Demchenko AP, Ercelen S, Roshal AD, Klymchenko AS (2002) Excited-state proton transfer reaction in a new benzofuryl 3-hydroxychromone derivative: The influence of low-polar solvents. Polish J Chem 76(9):1287–1299

    CAS  Google Scholar 

  11. Ercelen S, Klymchenko AS, Demchenko AP (2002) Ultrasensitive fluorescent probe for the hydrophobic range of solvent polarities. Anal Chim Acta 464(2):273–287

    Article  CAS  Google Scholar 

  12. Klymchenko AS, Mely Y, Demchenko AP, Duportail G (2004) Simultaneous probing of hydration and polarity of lipid bilayers with 3-hydroxyflavone fluorescent dyes. BBA-Biomembranes 1665(1–2):6–19

    Article  CAS  PubMed  Google Scholar 

  13. Klymchenko AS, Pivovarenko VG, Demchenko AP (2003) Elimination of the hydrogen bonding effect on the solvatochromism of 3-hydroxyflavones. J Phys Chem A 107(21):4211–4216

    Article  CAS  Google Scholar 

  14. Klymchenko AS, Duportail G, Mely Y, Demchenko AP (2003) Ultrasensitive Two-Color Fluorescence Probes for Dipole Potential in Phospholipid Membranes. Proc Natl Acad Sci USA 100(20):11219–11224

    Article  CAS  PubMed  Google Scholar 

  15. Ryder AG, Szczupak B, Rotchev YA, Klymchenko AS, Gorelov A, Glynn TJ (2005) A fluorescence methodology for assessing the polarity and composition of novel thermoresponsive hydrophilic/hydrophobic copolymer system, Proc SPIE—Int. Soc Opt Eng 5826:1–11

    Google Scholar 

  16. Doorty KB, Golubeva TA, Gorelov AV, Rochev YA, Allen LT, Dawson KA, Gallagher WM, Keenan AK (2003) Poly(N-isopropylacrylamide) co-polymer films as potential vehicles for delivery of an antimitotic agent to vascular smooth muscle cells. Cardiovasc Path 12(2):105–110

    Article  CAS  Google Scholar 

  17. Rochev Y, Golubeva T, Gorelov A, Allen L, Gallagher WM, Selezneva I, Gavrilyuk B, Dawson K (2001) Surface modification for controlled cell growth on copolymers of N-isopropylacrylamide. Progr Colloid Polym Sci 118:153–156

    Article  CAS  Google Scholar 

  18. Lynch I, Blute IA, Zhmud B, MacArtain P, Tosetto M, Allen LT, Byrne HJ, Farrell GF, Keenan AK, Gallagher WM, Dawson KA (2005) Correlation of the adhesive properties of cells to N-Isopropylacrylamide/N-tert-Butylacrylamide copolymer surfaces with changes in surface structure using contact angle measurements, molecular simulations, and Raman spectroscopy. Chem Mater 17(15):3889–3898

    Article  CAS  Google Scholar 

  19. Rochev Y, Halloran DO, Gorelova T, Gilcreest V, Selezneva I, Gavrilyuk B, Gorelov A (2004) Rationalising the design of polymeric thermoresponsive biomaterials. J Mater Sci-Mater M 15(4):513–517

    Article  CAS  Google Scholar 

  20. Gilcreest VP, Carroll WM, Rochev YA, Blute I, Dawson KA, Gorelov AV (2004) Thermoresponsive poly(N-isopropylacrylamide) copolymers: Contact angles and surface energies of polymer films. Langmuir 20(23):10138–10145

    Article  CAS  PubMed  Google Scholar 

  21. al-Lamee K, Cook D (2003) Polymer coating techniques for drug-eluting stents. Med Device Technol 14:12–14

    PubMed  Google Scholar 

  22. Dong DC, Winnik MA (1984) The Py scale of solvent polarities. Can J Chem 62:2560–2565

    Article  CAS  Google Scholar 

  23. Karpovich DS, Blanchard GJ (1995) Relating the polarity-dependent fluorescence response of pyrene to vibronic coupling. Achieving a fundamental understanding of the py polarity scale. J Phys Chem 99(12):3951–3958

    Article  CAS  Google Scholar 

  24. Duportail G, Lianos P (1990) Phospholipid-vesicles treated as fractal objects—a fluorescence probe study. Chem Phys Lett 165:35–40

    Article  CAS  Google Scholar 

  25. Thomas JK (1987) Characterization of surfaces by excited-states. J Phys Chem 91:267–276

    Article  CAS  Google Scholar 

  26. Szczupak B, Ryder AG, Togashi DM, Rotchev YA, Gorelov A, Glynn TJ (2009) Measuring the micro-polarity and hydrogen-bond donor/acceptor ability of thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamide copolymer films using solvatochromic indicators. Appl Spectrosc 63(4):442–449

    Article  CAS  PubMed  Google Scholar 

  27. Arrais D, Martins J (2007) Bilayer polarity and its thermal dependency in the o and d phases of binary phosphatidylcholine/cholesterol mixtures. Biochim Biophys Acta Biomembr 1768(11):2914–2922

    Article  CAS  Google Scholar 

  28. Winnik FM (1990) Fluorescence Studies of Aqueous Solutions of Poly(N-isoproylacrylamide) below and above their LCST. Macromolecules 23:233–242

    Article  CAS  Google Scholar 

  29. Schild HG (1992) Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  30. Ringsdorf H, Venzmer J, Winnik FM (1991) Fluorescence studies of hydrophobically modified poly(N-isopropylacrylamides). Macromolecules 24:1678–1686

    Article  CAS  Google Scholar 

  31. Martins TD, Yamaki SB, Prado EA, Atvars TDZ (2003) Broadening of the fluorescence spectra of hydrocarbons in ethylene-vinyl acetate copolymers and the dynamics of the glass transition. J Photochem Photobiol A 156:91–103

    Article  CAS  Google Scholar 

  32. Szczupak B (2003) Evaluation of polarity and hydrogen bonding ability of thermoresponsive N-isopropylacrylamide/N-tert-butylacrylamidecopolymer films using solvatochromic and fluorescence probes. PhD thesis, National University of Ireland, Galway, Galway

  33. Mizuno K, Matsui A (1987) Competition and coexistence of free and self-trapped excitons in aromatic molecular-crystals. J Lumin 38:323–325

    Article  CAS  Google Scholar 

  34. Matsui A, Ohno T, Mizuno K, Yokoyama T, Kobayashi M (1987) Effect of hydrostatic-pressure on excitons in alpha-perylene crystals. Chem Phys 111:121–128

    Article  CAS  Google Scholar 

  35. Seyfang R, Port HC, Wolf J (1988) Picosecond study on excimer formation in pyrene single-crystals.2. the excimer precursor state in the high-temperature phase. J Lumin 42:127–135

    Article  CAS  Google Scholar 

  36. Seyfang R, Port H, Fischer P, Wolf HC (1992) Picosecond study on excimer formation in pyrene crystals. 3. complete analysis of the high-temperature phase between 5 and 300-K. J Lumin 51:197–208

    Article  CAS  Google Scholar 

  37. Zimerman OE, Weiss RG (1998) Static and dynamic fluorescence from alpha, omega-Di(1-pyrenyl)alkanes in polyethylene films. Control of probe conformations and information about microstructure of the media. J Phys Chem A 102(28):5364–5374

    Article  CAS  Google Scholar 

  38. Prado EA, Yamaki SB, Atvars TDZ, Zimerman OE, Weiss RG (2000) Static and dynamic fluorescence of pyrene as probes of site polarity and morphology in ethylene-co-(vinyl acetate) (eva) films. J Phys Chem B 104:5905–5914

    Article  CAS  Google Scholar 

  39. Waris R, Acree WE Jr, Street KW Jr (1988) The Py and BPe polarity scales: effect of temperature of pyrene and benzo[ghi]perylene fluorescence spectra. Analyst 113(9):1465–1467

    Article  CAS  PubMed  Google Scholar 

  40. Chen S, McGuffin VL (1994) Temperature effect on pyrene as a polarity probe for supercritical fluid and liquid solutions. Appl Spectrosc 48(5):596–603

    Article  CAS  Google Scholar 

  41. Klymchenko AS, Demchenko AP (2002) Probing AOT reverse micelles with two-color fluorescence dyes based on 3-hydroxychromone. Langmuir 18(15):5637–5639

    Article  CAS  Google Scholar 

  42. Valeur B (2002) Molecular Fluorescence, Principles and Applications, Wiley-VCH, GmbH

  43. Demchenko AP (2002) The red-edge effects: 30 years of exploration. Luminescence 17:19–42

    Article  CAS  PubMed  Google Scholar 

  44. Shynkar VV, Klymchenko AS, Piémont E, Demchenko AP, Mély Y (2004) Dynamics of intermolecular hydrogen bonds in the excited states of 4 '-dialkylamino-3-hydroxyflavones. On the pathway to an ideal fluorescent hydrogen bonding sensor. J Phys Chem A 108(40):8151–8159

    Article  CAS  Google Scholar 

  45. Shynkar VV, Mély Y, Duportail G, Piémont E, Klymchenko AS, Demchenko AP (2003) Picosecond time-resolved fluorescence studies are consistent with reversible excited-state intramolecular proton transfer in 4’-dialkylamino-3-hydroxyflavones. J Phys Chem A 107(45):9522–9520

    Article  CAS  Google Scholar 

  46. Strandjord AJG, Barbara PF (1985) Proton-Transfer Kinetics of 3-Hydroxyflavone: Solvent Effects. J Phys Chem 89:2355–2361

    Article  CAS  Google Scholar 

  47. Yushchenko DA, Shvadchak VV, Klymchenko AS, Duportail G, Pivovarenko VG, Mely Y (2007) Modulation of excited-state intramolecular proton transfer by viscosity in protic media. J Phys Chem A 111(40):10435–10439

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was part supported by funding from the National Centre for Biomedical Engineering Science in NUI-Galway as part of the Higher Education Authority Programme for Research in Third Level Institutions, from NUI-Galway in the form of a fellowship to BS, and from a Science Foundation Ireland Principal Investigator award to AGR under (Grant number 02/IN.1/M231).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan G. Ryder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczupak, B., Ryder, A.G., Togashi, D.M. et al. Polarity Assessment of Thermoresponsive Poly(NIPAM-co-NtBA) Copolymer Films Using Fluorescence Methods. J Fluoresc 20, 719–731 (2010). https://doi.org/10.1007/s10895-010-0613-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-010-0613-5

Keywords

Navigation