Skip to main content
Log in

Fluorescence Interaction and Determination of Calf Thymus DNA with Two Ethidium Derivatives

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

In this paper, we reported the syntheses and investigation of the modes of binding to DNA of the two new ethidium derivatives containing benzoyl and phenylacetyl groups of both amines at 3-and 8- positions. The interactions between calf thymus DNA (ct-DNA) and the two derivatives, 3,8-dibenzoylamino-5-ethyl-6-phenylphenantridinium cloride (E2) and 3,8-diphenylacetylamino-5-ethyl-6-phenylphenantridinium chloride (E3), were investigated by fluorescence quenching spectra and UV-vis absorption spectra. The Stern-Volmer quenching constants, binding constants, binding sites and the corresponding thermodynamic parameters ΔH, ΔS and ΔG were calculated at different temperatures. The results indicated the formation of E2 and E3-DNA complexes and van der Waals interactions as the predominant intermolecular forces in stabilizing for each complex. In addition, increasing nucleophilicity of the functional groups at 3- and 8- positions exhibited the respectable increment the DNA binding affinities of derivatives. The results of absorption, ionic strength and iodide ion quenching suggested that the interaction mode of E2 and E3 with ct-DNA was intercalative binding. The limit of detection (LOD) of ct-DNA were 7.49 × 10−8 (n = 4) and 4.18 × 10−8 mol/l (n = 7) in presence of E2 and E3, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cao Y, He X, Gao Z, Peng L (1999) Fluorescence energy transfer between acridine orange and safranine T and its application in the determination of DNA. Talanta 49:377–383. doi:10.1016/S0039-9140(98)00386-5

    Article  CAS  PubMed  Google Scholar 

  2. Zhu Q-Z, Yang H-H, Li D-H, Xu J-G (1999) Determination of nucleic acids using phosphin 3R as a fluorescence probe. Anal Chim Acta 394:177–184. doi:10.1016/S0003-2670(99)00309-8

    Article  CAS  Google Scholar 

  3. Li J, Wei Y-X, Wei Y-L, Dong C (2007) Study of the spectral behavior of four flıorescent dyes and their interactions with nucleic acid by the luminescence method. J Lumin 124:143–150. doi:10.1016/j.jlumin.2006.02.012

    Article  CAS  Google Scholar 

  4. Wang Z-M, Lin H-K, Zhu S-R, Liu T-F, Chen Y-T (2002) Spectroscopy, cytotoxicity and DNA-binding of the lanthanum(III) complex of an L-valine derivative of 1, 10-phenanthroline. J Inorg Biochem 89:97–106. doi:10.1016/S0162-0134(01)00395-6

    Article  CAS  PubMed  Google Scholar 

  5. Wang Z-M, Lin H-K, Zhou Z-F, Xu M, Liu T-F, Zhu S-R, Chen Y-T (2001) Copper(II) complexes with N, Nı-Dialkyl-1, 10-phenanthroline-2, 9-dimethanamine: Synthesis, characterization, DNA-binding thermodynamical and kinetic studies. Bioorg Med Chem 9:2849–2855. doi:10.1016/S0968-0896(01)00193-6

    Article  CAS  PubMed  Google Scholar 

  6. Lianos P, Georghiou S (1979) Complex formation between pyrene and the nucleotides GMP, CMP, TMP and AMP. Photochem Photobiol 29:13–21. doi:10.1111/j.1751-1097.1979.tb09253.x

    Article  CAS  Google Scholar 

  7. Guan Y, Zhou W, Yao X, Zhao M, Li Y (2006) Determination of nucleic acids based on the fluorescence quenching of Hoechst 33258 at pH4.5. Anal Chim Acta 570:21–28. doi:10.1016/j.aca.2006.03.106

    Article  CAS  Google Scholar 

  8. Alonso A, Almendral MJ, Curto Y, Criado JJ, Rodriguez E, Manzano JL (2006) Determination of the DNA-binding characteristics of ethidium bromide, proflavine, and cisplatin by flow injection analysis: Usefulness in studies on antitumor drugs. Anal Biochem 355:157–164. doi:10.1016/j.ab.2006.06.004

    Article  CAS  PubMed  Google Scholar 

  9. Labieniec M, Gabryelak T (2006) Interactions of tannic acid and its derivatives (ellagic and gallic acid) with calf thymus DNA and bovine serum albumin using spectroscopic method. J Photochem Photobiol B Biol 82:72–78. doi:10.1016/j.jphotobiol.2005.09.005

    Article  CAS  Google Scholar 

  10. Quiao C, Bi S, Sun Y, Song D, Zhang H, Zhou W (2008) Study of interactions of anthraquinones with DNA using ethidium bromide as a fluorescence probe. Spectrochim Acta A Mol Biomol Spectrosc 70(1):136–143. doi:10.1016/j.saa.2007.07.038

    Article  Google Scholar 

  11. Garbett NC, Hammond NB, Graves DE (2004) Influence of the amino substituents in the interaction of ethidium bromide with DNA. Biophys J 87:3954–3981. doi:10.1529/biophysj.104.047415

    Article  Google Scholar 

  12. Luedtke NW, Liu Q, Tor Y (2003) Synthesis, photophysical properties, and nucleic acid binding of phenanthridinium derivatives based on ethidium. Bioorg Med Chem 11:5235–5247. doi:10.1016/j.bmc.2003.08.006

    Article  CAS  PubMed  Google Scholar 

  13. Rangarajan S, Friedman SH (2007) Design, synthesis, and evaluation of phenanthridine derivatives targeting the telomerase RNA/DNA heteroduplex. Bioorg Med Chem Lett 17:2267–2273. doi:10.1016/j.bmcl.2007.01.070

    Article  CAS  PubMed  Google Scholar 

  14. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New York

    Google Scholar 

  15. Sun Y, Bi S, Song D, Qiao C, Mu D, Zhang H (2008) Study on the interaction mechanism between DNA and the main active components in Scutellaria baicalensis Georgi. Sens Actuators B Chem 129:799–810. doi:10.1016/j.snb.2007.09.082

    Article  Google Scholar 

  16. Qui B, Guo L, Wang W, Chen G (2007) Synthesis of a novel fluorescent probe useful for DNA detection. Biosens Bioelectron 22:2629–2635. doi:10.1016/j.bios.2006.10.036

    Article  Google Scholar 

  17. Hu Z, Tong C (2007) Synchronous fluorescence determination of DNA based on the interaction between methylene blue and DNA. Anal Chim Acta 587(2):187–193. doi:10.1016/j.aca.2007.01.050

    Article  CAS  PubMed  Google Scholar 

  18. Li JF, Dong C (2009) Study on the interaction of morphine chloride with deoxyribonucleic acid by fluorescence method. Spectrochim Acta A Mol Biomol Spectrosc 71:1938–1943. doi:10.1016/j.saa.2008.07.033

    Article  CAS  PubMed  Google Scholar 

  19. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 20:3096–3102. doi:10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  20. Deepa S, Mishra AK (2005) Fluorescence spectroscopic study of serum albumin-bromadiolone interaction: Fluorimetric determination of bromadiolone. J Pharm Biomed Anal 38:556–563. doi:10.1016/j.jpba.2005.01.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific and Technical Research Council of Turkey (TUBITAK ) (project No TBAG-107 T391).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmas Gök.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akbay, N., Seferoğlu, Z. & Gök, E. Fluorescence Interaction and Determination of Calf Thymus DNA with Two Ethidium Derivatives. J Fluoresc 19, 1045–1051 (2009). https://doi.org/10.1007/s10895-009-0504-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-009-0504-9

Keywords

Navigation