Skip to main content
Log in

Spectrofluorimetric Determination of Fluvoxamine in Dosage Forms and Plasma Via Derivatization with 4-Chloro-7-Nitrobenzo-2-Oxa-1,3-Diazole

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

A highly sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the antidepressant fluvoxamine (FXM) in its dosage forms and plasma. The method was based on nucleophilic substitution reaction of FXM with 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole in an alkaline medium (pH 8) to form a highly fluorescent derivative that was measured at 535 nm after excitation at 470 nm. The factors affecting the reaction was carefully studied and optimized. The kinetics of the reaction was investigated, and the reaction mechanism was presented. Under the optimized conditions, linear relationship with good correlation coefficient (0.9995) was found between the fluorescence intensity and FXM concentration in the range of 65–800 ng ml−1. The limits of detection and quantitation for the method were 21 and 64 ng ml−1, respectively. The precision of the method was satisfactory; the values of relative standard deviations did not exceed 2.17%. The proposed method was successfully applied to the determination of FXM in its pharmaceutical tablets with good accuracy; the recovery values were 97.8–101.4 ± 1.08–2.75%. The results obtained by the proposed method were comparable with those obtained by the official method. The high sensitivity of the method allowed its successful application to the analysis of FXM in spiked human plasma. The proposed method is superior to the previously reported spectrofluorimetric method for determination of FXM in terms of its simplicity. The proposed method is practical and valuable for its routine application in quality control and clinical laboratories for analysis of FXM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Potter WZ, Hollister LE (2004) In: Katzung BG (ed) Basic & clinical pharmacology, 9th edn.482–496

  2. Iversen L, Glennon RA (2003) In: Abraham DJ (ed) Burger’s medicinal chemistry and drug discovery, vol. 6,. 6th edn. Wiley, New York, p 483

    Google Scholar 

  3. British Pharmacopoeia (2003) The Stationary Office Ltd., London, pp 820–821

  4. Nouws HP, Delerue-Matos C, Barros AA, Rodrigues JA, Santos-Silva A (2005) Electroanalytical study of fluvoxamine. Anal Bioanal Chem 382:1662–1668. doi:10.1007/s00216-005-3310-5

    Article  PubMed  CAS  Google Scholar 

  5. Trefi S, Gilard V, Balayssac S, Malet-Martino M, Martino R (2008) Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the internet by 19F and 2D DOSY 1H NMR. J Pharm Biomed Anal 46:707–722. doi:10.1016/j.jpba.2007.11.038

    Article  PubMed  CAS  Google Scholar 

  6. The United States Pharmacopeia 31, The National Formulary 26 (2008) US Pharmacopeial Convention Inc., Rockville MD, pp. 2225–2227

  7. Maria AS, Laura M, Giuseppina F, Lawrence JA, Roberto M, Maria AR (2006) Simultaneous determination of fluvoxamine isomers and quetiapine in human plasma by means of high-performance liquid chromatography. J Chromatogr B Analyt Technol Biomed Life Sci 843:227–233. doi:10.1016/j.jchromb.2006.06.001

    Article  CAS  Google Scholar 

  8. Ohkubo T, Shimoyama R, Otani K, Yoshida K, Higuchi H, Shimizu T (2003) High-performance liquid chromatographic determination of fluvoxamine and fluvoxamino acid in human plasma. Anal Sci 19:859–864. doi:10.2116/analsci.19.859

    Article  PubMed  CAS  Google Scholar 

  9. Berzas JJ, Villaseñor MJ, Guiberteau C, Rodríguez V, Buitrago S (2006) Sensitive capillary GC-MS-SIM determination of selective serotonin reuptake inhibitors: reliability evaluation by validation and robustness study. J Sep Sci 29:103–113. doi:10.1002/jssc.200500119

    Article  CAS  Google Scholar 

  10. Berzas JJ, Villaseñor MJ, Contento AM, Agua E (2005) Assay validation for three antidepressants in pharmaceutical formulations: practical approach using capillary gas chromatography. J Pharm Biomed Anal 38:52–59

    Google Scholar 

  11. Berzas JJ, Villaseñor MJ, Contento AM, Agua E (2000) Determination of fluoxetine, fluvoxamine, and clomipramine in pharmaceutical formulations by capillary gas chromatography. J Chromatogr Sci 38:200–206

    Google Scholar 

  12. Berzas JJ, Contento AM, Villaseñor MJ, Aguas E (2000) Method development and validation for the simultaneous determination of fluoxetine and fluvoxamine in pharmaceutical preparations by capillary electrophoresis. Anal Chim Acta 417:169–176. doi:10.1016/S0003-2670(00)00926-0

    Article  Google Scholar 

  13. Alhaider AA, Hagga ME, Alawady ME, Gad-kariem EA (1993) Spectrophotometric determination of fluvoxamine in tablets based on charge-transfer complex with chloranil. Anal Lett 26:887–901

    CAS  Google Scholar 

  14. Starczewska B, Jasińska A, Białous B (2003) Study and analytical application of ion-pair formation in the system fluoxetine-pyrocatechol violet and fluvoxamine-pyrocatechol violet. Pharmazie 58:245–248

    PubMed  CAS  Google Scholar 

  15. Starczewska B, Mielech K (2000) Application of chrome azurol S for the extractive spectrophotometric determination of fluoxetine and fluvoxamine. J Pharm Biomed Anal 23:243–247. doi:10.1016/S0731-7085(00)00296-X

    Article  PubMed  CAS  Google Scholar 

  16. Atmaca S, Tarta S (1994) Spectrophotometric determination of fluvoxamine maleate in tablets. Pharmazie 49:458–459

    CAS  Google Scholar 

  17. Starczewska B, Puzanowska-Tarasiewicz H, Baranowska K (2000) Investigation and analytical application of the reactions of eriochrome cyanine R with fluvoxamine and fluoxetine. J Pharm Biomed Anal 23:477–481. doi:10.1016/S0731-7085(00)00323-X

    Article  PubMed  CAS  Google Scholar 

  18. Darwish IA, Refaat IH (2006) Spectrophotometric analysis of selective serotonin reuptake inhibitors based on formation of charge-transfer complexes with tetracyano-quinodimethane and chloranilic acid. J AOAC Int 89:326–333

    PubMed  CAS  Google Scholar 

  19. El-Enany N (2007) Spectrofluorometric determination of fluvoxamine in dosage forms, spiked plasma, and real human plasma by derivatization with fluorescamine. J AOAC Int 90:376–383

    PubMed  CAS  Google Scholar 

  20. Taha EA, Salama NN, Fattah L (2006) Spectrofluorimetric and spectrophotometric stability-indicating methods for determination of some oxicams using 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). Chem Pharm Bull (Tokyo) 54:653–658. doi:10.1248/cpb.54.653

    Article  CAS  Google Scholar 

  21. El-Enany N, El-Sherbiny D, Belal F (2007) Spectrophotometric, spectrofluorometric and HPLC determination of desloratadine in dosage forms and human plasma. Chem Pharm Bull (Tokyo) 55:1662–1670. doi:10.1248/cpb.55.1662

    Article  CAS  Google Scholar 

  22. Saleh HM, El-Henawee MM, Ragab GH, El-Hay SS (2007) Utility of NBD-Cl for the spectrophotometric determination of some skeletal muscle relaxant and antihistaminic drugs. Spectrochim. Acta [A] 67:1284–1289. doi:10.1016/j.saa.2006.09.039

    Article  CAS  Google Scholar 

  23. Olojo RO, Xia RH, Abramson JJ (2005) Spectrophotometric and fluorometric assay of superoxide ion using 4-chloro-7-nitrobenzo-2-oxa-1,3-diazole. Anal Biochem 339:338–344. doi:10.1016/j.ab.2005.01.032

    Article  PubMed  CAS  Google Scholar 

  24. Pesez M, Bartos J (1974) Colorimetric and spectrofluorimetric analysis of organic compounds and drugs. Marcel Dekker Inc., New York, pp 628–630

    Google Scholar 

  25. Rose J (1964) In: Advanced physicochemical experiments. Pitman, London, p 67

  26. Aktas ES, Ersoy L, Sagirh O (2003) A new spectrofluorimetric method for the determination of lisinopril in tablets. IL Farmaco 58:165–168. doi:10.1016/S0014-827X(02)00013-7

    Article  PubMed  CAS  Google Scholar 

  27. Miyano H, Toyo’oka T, Imai K (1985) Further studies on the reaction of amines and proteins with 4-fluoro-7-nitrobenzo-2-oxa-1,3-diazole. Anal Chim Acta 170:81–87. doi:10.1016/S0003-2670(00)81728-6

    Article  CAS  Google Scholar 

  28. Imai K, Toyo Oka T, Miyano H (1984) Fluorigenic reagents for primary and secondary amines and thiols in high-performance liquid chromatography. A review. Analyst (Lond) 109:1365–1373. doi:10.1039/an9840901365

    Article  CAS  Google Scholar 

  29. Martin A, Swarbrick J, Cammarata A, Chun A (2004) Physical pharmacy: physical chemical principles in the pharmaceutical sciences,, 3rd edn. Lea & Febiger, Philadelphia, p 371

    Google Scholar 

  30. ICH guideline Q2(R1) (2005) Validation of analytical procedures: text and methodology, London

  31. Banerjee AK (1988) BMJ 296:1774

    Article  PubMed  CAS  Google Scholar 

  32. Ulu ST (2007) HPLC method for the determination of fluvoxamine in human plasma and urine for application to pharmacokinetic studies. J Pharm Biomed Anal 43:1444–1451. doi:10.1016/j.jpba.2006.11.005

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim A. Darwish.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Darwish, I.A., Amer, S.M., Abdine, H.H. et al. Spectrofluorimetric Determination of Fluvoxamine in Dosage Forms and Plasma Via Derivatization with 4-Chloro-7-Nitrobenzo-2-Oxa-1,3-Diazole. J Fluoresc 19, 463–471 (2009). https://doi.org/10.1007/s10895-008-0433-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-008-0433-z

Keywords

Navigation