Skip to main content
Log in

Fluorescence Characteristics of Some Dehydroabietic Acid-Based Arylamines

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Absorption spectra and fluorescence data in nonpolar solvents are reported for seven novel dehydroabietic acid-based diarylamines, which have potential as components of hole transport layers for molecular electronic devices. This bulky group has been found to improve the possibilities for film formation of these compounds, and in this study we show that this does not significantly affect their fluorescence characteristics, which are similar to diphenylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Aviram A, Ratner MA (1974) Molecular rectifiers. Chem Phys Lett 29:277–283

    Article  CAS  Google Scholar 

  2. Friend RH, Gymer RW, Holmes AB, Burroughes JH, Marks RN, Taliani C, Bradley DDC, Dos Santos DA, Brédas JL, Löglund M, Salaneck WR (1999) Electroluminescence in conjugated polymers. Nature 397:121–128

    Article  CAS  Google Scholar 

  3. Forrest SR (2004) The path to the ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918

    Article  PubMed  CAS  Google Scholar 

  4. Pai DM, Yanus JF, Stolka M (1984) Trap-controlled hopping transport. J Phys Chem 88:4714–4717

    Article  CAS  Google Scholar 

  5. Naito K, Miura A (1993) Molecular design for nonpolymeric organic-dye glasses with thermal stability. Relations between thermodynamic parameters and amorphous properties. J Phys Chem 97:6240–6248

    Article  CAS  Google Scholar 

  6. Okutsu S, Onikubo T, Tamano M, Enokida T (1997) Molecular design of hole transport material with various ionization potential for light-emitting diode application. IEEE Trans Electron Dev 44:1302–1306

    Article  CAS  Google Scholar 

  7. Thelakkat M, Schmitz C, Hohle C, Strohriegl P, Schnidt H-W, Hofmann U, Schloter S, Haarer D (1999) Novel functional materials based on triarylamines—synthesis and application in electroluminescence devices and photorefractive systems. Phys Chem Chem Phys 1:1693–1698

    Article  CAS  Google Scholar 

  8. Yakushchenko IK, Kaplunov MG, Efimov ON, Belov MY, Shamaev SN (1999) Polytriphenylamine derivatives as materials for hole transporting layers in electroluminescent devices: conduction and transport mechanisms in organic materials: preparation, characterisation and application. Phys Chem Chem Phys 1:1783–1785

    Article  CAS  Google Scholar 

  9. Strzelec K, Tsukamoto N, Kook HJ, Sato H (2001) Synthesis and characterization of new 4-tolyldiphenylamine derivatives for hole transporting polymers. Polym Int 50:1228–1233

    Article  CAS  Google Scholar 

  10. Jiang X, Liu S, Liu MS, Herguth P, Jen AK-Y, Fong H, Sarikaya M (2002) Perfluorocyclobutane-based arylamine hole transporting materials for organic and polymer light emitting diodes. Adv Funct Mater 12:745–751

    Article  CAS  Google Scholar 

  11. Loy DE, Koene BE, Thompson ME (2002) Thermally stable hole transporting materials based upon a fluorene core. Adv Funct Mater 12:245–249

    Article  CAS  Google Scholar 

  12. Xin H, Guang M, Li FY, Bian ZQ, Huang CH, Ibrahim K, Liu FQ (2002) Photoluminescence and electroluminescence of the exciplex formed between a terbium ternary complex and N,N-diphenyl-N,N-bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine. Phys Chem Chem Phys 4:5895–5898

    Article  CAS  Google Scholar 

  13. Chen JP, Tanabe H, Li X-C, Thoms T, Okamura Y, Ueno K (2003) Novel organic hole transport material with very high Tg for light emitting diodes. Synth Met 132:173–176

    Article  CAS  Google Scholar 

  14. Satoh N, Cho J-S, Higuchi M, Yamamoto K (2003) Novel triarylamine dendrimers as a hole transport material with controlled metal-assembling function. J Am Chem Soc 125:8104–8105

    Article  PubMed  CAS  Google Scholar 

  15. Salbeck J (1996) Electroluminescence with organic compounds. Ber Bunsenges Phys Chem 100:1667–1677

    CAS  Google Scholar 

  16. Strohriegl P, Grazulevicius JV (2002) Charge-transporting molecular glasses. Adv Mater 14:1439–1452

    Article  CAS  Google Scholar 

  17. Redecker M, Bradley DDC, Inbasekaran M, Woo WW, Woo EP (1999) High mobility hole transport fluorene–triarylamine copolymers. Adv Mater 11:241–246

    Article  CAS  Google Scholar 

  18. Miteva T, Meisl A, Knoll W, Nothofer HG, Scherf U, Müller DC, Meerholz K, Yasuda A, Neher D (2001) Improving the performance of polyfluorene based organic light-emitting diodes by end-capping. Adv Mater 13:565–570

    Article  Google Scholar 

  19. Ego C, Grimsdale AC, Uckert F, Yu G, Srdanov G, Müllen K (2002) Triphenylamine substituted polyfluorene—a stable blue emitter with improved charge-injection for light-emitting diodes. Adv Mater 14:809–811

    Article  CAS  Google Scholar 

  20. Tong KL, So SK, Ng, HF, Leung, LM, Yeung MY, Lo CF (2004) Synth Met 147:199–203

    Article  CAS  Google Scholar 

  21. Justin Thomas KR, Lin JT, Tao Y-T, Chuen CH (2002) Electroluminescent bipolar compounds containing quinoxaline or pyridopyrazime amd triarylamine segments. J Mater Chem 12:3516–3522

    Article  CAS  Google Scholar 

  22. Tong Y, Wu Z, Yang C, Yu J, Zhang X, Yang S, Deng X, Wen Y (2001) Determination of diphenylamine stabilizer and its structural derivatives in smokeless gunpowder using a tandem MS method. Analyst 126:480–484

    Article  PubMed  CAS  Google Scholar 

  23. Esteves MA, Narender N, Marcelo-Curto MJ, Gigante B (2001) Synthetic derivatives of abietic acid with radical scavenging ability. J Nat Prod 64:761–766

    Article  PubMed  CAS  Google Scholar 

  24. Belfield KD, Bondar MV, Przhonska OV, Schafer KJ (2002) Steady-state spectroscopic and fluorescence lifetime measurements of new two-photon absorbing fluorene derivatives. J Fluoresc 12:449–454

    Article  CAS  Google Scholar 

  25. Burrows HD, Castro RAE, Esteves MA, Gigante B, Leitão MLP, Pauleta AC (2006) Novel organic hole transport layers for molecular electronic systems. Mater Sci Forum 514–516:8–12

    Article  Google Scholar 

  26. Burrows HD, Fonseca SM, Gigante B, Esteves MA, Guerreiro AM (2006) Fluorescence study of dehydroabietic acid-based bipolar arylamine–quinoxalines. J Fluoresc 16:227–231

    Article  PubMed  CAS  Google Scholar 

  27. Morgado J, Alcácer L, Esteves, MA, Pires N, Gigante B (2006) New stilbene-based arylamines with dehydroabietic acid methyl ester moieties for organic light-emitting diodes. Thin Solid Films (in press) DOI 10.1016/j.tsf.2006.11.136

  28. Schoo HFM, Demandt RJCE (1998) Materials for polymer light emitting diodes. Philips J Res 51:527–533

    Article  CAS  Google Scholar 

  29. Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13:3299–3305

    Article  CAS  Google Scholar 

  30. Adams JE, Mantulin WW, Huber JR (1973) Effect of molecular geometry on spin-orbit coupling of aromatic amines in solution. Diphenylamine, iminobibenzyl, acridan and carbazole. J Am Chem Soc 95:5477–5481

    Article  CAS  Google Scholar 

  31. Haink HJ, Huber JR (1976) Intersystem crossing processes and molecular geometry in aromatic amines. Chem Phys Lett 44:117–120

    Article  CAS  Google Scholar 

  32. Li W, McChesney JD (1992) Preparation of potential antiinflammatory agents from dehydroabietic acid. J Pharm Sci 81:646–651

    Article  PubMed  CAS  Google Scholar 

  33. Matsumoto T, Ohsuga Y, Harada S, Fukui K (1977) Synthesis of taxodione, royleanone, cryptojapanol and methyl 11-hydroxy-12-methoxy-7-oxoabieta-8,11,13-trien-18-oate. Bull Chem Soc Jpn 50:266–272

    Article  CAS  Google Scholar 

  34. Miller JN (ed) (1981) Standards in fluorescence spectrometry. Chapman and Hall, London

  35. Becker RS, Seixas de Melo J, Maçanita AL, Elisei F (1996) Comprehensive evaluation of the absorption, photophysical, energy transfer, structural, and theoretical properties of α-oligothiophenes with one to seven rings. J Phys Chem 100:18683–18695

    Article  CAS  Google Scholar 

  36. Chattopadhyay N, Serpa C, Pereira MM, Seixas de Melo J, Arnaut LG, Formosinho SJ (2001) Intramolecular charge transfer of p-(dimethylamino)benzethyne: a case of nonfluorescent ICT state. J Phys Chem A 105:10025–10030

    Article  CAS  Google Scholar 

  37. Seixas de Melo J, Silva LM, Kuroda M (2001) Photophysical and theoretical studies of naphthalene substituted oligothiophenes. J Chem Phys 115:5625–5636

    Article  CAS  Google Scholar 

  38. Striker G, Subramanian V, Seidel CAM, Volkmer A (1999) Photochromicity and fluorescent lifetimes of green fluorescent protein. J Phys Chem B 103:8612–8617

    Article  CAS  Google Scholar 

  39. Murov SL, Carmichael I, Hug GL (1993) Handbook of photochemistry, 2nd edn. Marcel Dekker, New York

    Google Scholar 

  40. Montes VA, Li, G, Pohl R, Shinar J, Anzenbacher P, Jr (2004) Effective color tuning in organic light-emitting diodes based on aluminium tris(5-aryl-8-hydroxyquinoline) complexes. Adv Mater 16:2001–2003

    Article  CAS  Google Scholar 

  41. Amthor S, Noller B, Lambert C (2005) UV/Vis/NIR spectral properties of triarylamines and their corresponding radical cations. Chem Phys 316:141–152

    Article  CAS  Google Scholar 

  42. Mazumdar S, Manoharan R, Dogra SK (1989) Solvatochromic effects in the fluorescence of a few diamino aromatic compounds. J Photochem Photobiol A Chem 46:301–314

    Article  CAS  Google Scholar 

  43. Burrows HD, Greatorex D, Kemp TJ (1972) Solute radical cation yields in the pulse radiolysis of aromatic amines in chlorinated hydrocarbons. J Phys Chem 76:20–26

    Article  CAS  Google Scholar 

  44. ormosinho SJ, Arnaut LG (1993) Excited-state proton-transfer reactions. 2. Intramolecular reactions. J Photochem Photobiol A Chem 75:21–48

    Article  CAS  Google Scholar 

  45. Le Gourrierec D, Ormson SM, Brows RG (1994) Excited state intramolecular proton transfer part 2: ESIPT to oxygen. Progr React Kinet 19:211–275

    Google Scholar 

  46. Strickler SJ, Berg RA (1962) Relationship between absorption intensity and fluorescence lifetime of molecules. J Chem Phys 37:814–822

    Article  CAS  Google Scholar 

  47. Bensasson RV, Land EJ, Truscott TG (1993) Excited states and free radicals in biology and medicine. Oxford University Press, Oxford, p 90

    Google Scholar 

  48. Kraft A, Grimsdale AC, Holmes AB (1998) Electroluminescent conjugated polymers—seeing polymers in a new light. Angew Chem Int Ed 37:402–428

    Article  Google Scholar 

  49. Monkman AP, Burrows HD, Hartwell LJ, Horsburgh LE, Hamblett I, Navaratnam S (2001) Triplet energies of π-conjugated polymers. Phys Rev Lett 86:1358–1361

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to Dr. J Seixas de Melo and Mr. J. Pina for the fluorescence lifetime measurements. We thank Profs. M. H. Garcia and M. A. Seabra (IST) for the use of the voltammetric equipment. We also thank POCI, FCT, FEDER (POCI/QUI/58291/2004), GRICES and DST (Acordo de Cooperação Científica e Tecnológica Portugal–India) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Burrows.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burrows, H.D., Chattopadhyay, N., Esteves, M.A. et al. Fluorescence Characteristics of Some Dehydroabietic Acid-Based Arylamines. J Fluoresc 17, 701–706 (2007). https://doi.org/10.1007/s10895-007-0221-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0221-1

Keywords

Navigation