Skip to main content
Log in

Specificity of Cyanine Dye L-21 Aggregation in Solutions with Nucleic Acids

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

Optical spectroscopy experiments were used to study the features of cyanine dye 3,3′-dimethyl-9-(2-thienyl)-thiacarbocyanine iodide (L-21) aggregation in binary solutions DMF:Tris–HCl buffer (pH = 8) containing nucleic acids (DNA or RNA). The appearance of absorption and luminescence bands associated with J-aggregates and dimers that are formed within the minor groove of DNA has been observed. The model of L-21 J-aggregate structure is proposed. It has been found that dimers are the building blocks of L-21 J-aggregates. Disorientation in dimers caused by the minor groove curvature is reason of observation of Davydov splitting in absorption spectrum of L-21 J-aggregates. In the solution containing DNA the absorption and luminescence bands of L-21 J-aggregates exhibit the specific properties that allows the dye L-21 to be used as a fluorescent probe for DNA detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Structure 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Waring MJ, Chaires JB (eds) (2005) DNA binders and related subjects. Springer, Berlin

    Google Scholar 

  2. Haughland R (2002) Molecular probes. Handbook of fluorescent probes and research chemicals, 9th edn. Molecular Probes, Eugene, OR

    Google Scholar 

  3. Ohulchanskyy TY, Pudavar HE, Yarmoluk SM, Yashchuk VM, Bergey EJ, Prasad PN (2003) A monomethine cyanine dye Cyan40 for two-photon-excited fluorescence detection of nucleic acids and their visualization in live cells. Photochem Photobiol 77(2):138–145

    Article  PubMed  CAS  Google Scholar 

  4. Yarmoluk SM, Losytskyy MYu, Yashchuk VM (2002) Nonradiative deactivation of the electronic excitation energy in cyanine dyes: influence of binding to DNA. J Photochem Photobiol B 67(1):57–63

    Article  PubMed  CAS  Google Scholar 

  5. Valyukh IV, Kovalska VB, Slominskii YL, Yarmoluk SM (2002) Spectroscopic studies of α, γ-disubstituted trimethine cyanine: new fluorescent dye for nucleic acids. J Fluoresc 12(1):105–107

    Article  CAS  Google Scholar 

  6. Losytskyy MYu, Volkova KD, Kovalska VB, Makovenko IE, Slominskii YuL, Tolmachev OI, Yarmoluk SM (2005) Fluorescent properties of pentamethine cyanine dyes with cyclopentene and cyclohexene group in presence of biological molecules. J Fluoresc 15(6):849–857

    Article  PubMed  CAS  Google Scholar 

  7. Kovalska VB, Volkova KD, Losytskyy MYu, Tolmachev OI, Balanda AO, Yarmoluk SM (2006) 6,6′-Disubstituted benzothiazole trimethine cyanines—new fluorescent dyes for DNA detection. Spectrochim Acta A Mol Biomol Spectrosc 65(2):271–277

    Article  PubMed  CAS  Google Scholar 

  8. Kovalska VB, Tokar VP, Losytskyy MYu, Deligeorgiev T, Vassilev A, Gadjev N, Drexhage K-H, Yarmoluk SM (2006) Studies of monomeric and homodimeric oxazolo[4,5-b]pyridinium cyanine dyes as fluorescent probes for nucleic acids visualization. J Biochem Biophys Methods 68(3):155–165

    Article  PubMed  CAS  Google Scholar 

  9. Bianco PR, Brewer LR, Corzett M, Balhorn R, Yeh Y, Kowalczykowski SC, Baskin RJ (2001) Processive translocation and DNA unwinding by individual RecBCD enzyme molecules. Nature 409:374–378

    Article  PubMed  CAS  Google Scholar 

  10. Lerman LS (1961) Structural considerations in the interaction of DNA and acridines. J Mol Biol 3:18–30

    Article  PubMed  CAS  Google Scholar 

  11. Rye HS, Yue S, Wemmer DE, Quesada MA, Haughland RP, Mathies RA, Glazer A (1992) Stable fluorescent complexes of double-stranded DNA with bis-intercalating asymmetric cyanine dyes: properties and applications. Nucleic Acids Res 20(11):2803–2812

    Article  PubMed  CAS  Google Scholar 

  12. Larsson A, Carlsson C, Jonsson M, Albinsson B (1994) Characterization of the binding of the fluorescent dyes YO and YOYO to DNA by polarized light spectroscopy. J Am Chem Soc 116:8459–8465

    Article  CAS  Google Scholar 

  13. Wemmer DE, Dervan HD (1997) Targeting the minor groove of DNA. Curr Opin Struct Biol 7:355–361

    Article  PubMed  CAS  Google Scholar 

  14. Norden B (1977) Optical studies on complexes between DNA and pseudoisocyanine. Biophys Chem 6:31–45

    Article  Google Scholar 

  15. Seifert JL, Connor RE, Kushon SA, Wang M, Armitage BA (1999) Spontaneous assembly of helical cyanine dye aggregates on DNA nanotemplates. J Am Chem Soc 121:2987–2995

    Article  CAS  Google Scholar 

  16. Wang M, Silva GL, Armitage B (2000) DNA-templated formation of a helical cyanine dye J-aggregate. J Am Chem Soc 122(41):9977–9985

    Article  CAS  Google Scholar 

  17. Wemmer DE (2000) Designed sequence-specific minor groove ligands. Annu Rev Biophys Biomol Struct 29:439–461

    Article  PubMed  CAS  Google Scholar 

  18. McRae EG, Kasha M (1964) In: Augenstein L, Mason R, Rosenberg B (eds) Physical processes in radiation biology. Academic, New York, pp 337–363

    Google Scholar 

  19. Czikkely V, Forsterling HD, Kuhn H (1970) Extended dipole model for aggregates of dye molecules. Chem Phys Lett 6(3):207–210

    Article  CAS  Google Scholar 

  20. Ogul´chansky TYu, Losytskyy MYu, Kovalska VB, Lukashov SS, Yashchuk VM, Yarmoluk SM (2001) Interaction of cyanine dyes with nucleic acids. XVIII. Formation of the carbocyanine dye J-aggregates in nucleic acid grooves. Spectrochim Acta A Mol Biomol Spectrosc 57(13):2705–2715

    Article  CAS  Google Scholar 

  21. Losytskyy MYu, Yashchuk VM, Lukashov SS, Yarmoluk SM (2002) Davydov splitting in spectra of cyanine dye J-Aggregates, formed on the polynucleotide. J Fluoresc 12(1):109–112

    Article  Google Scholar 

  22. Chowdhury A, Wachsmann-Hogiu S, Bangal PR, Raheem I, Peteanu LA (2001) Characterization of chiral H- and J-aggregates of cyanine dyes formed by DNA templating using stark and fluorescence spectroscopies. J Phys Chem B 105(48):12196–12201

    Article  CAS  Google Scholar 

  23. Mobius D (1995) Scheibe aggregates. Adv Matter 7(5):437–444

    Article  Google Scholar 

  24. Kobayashi T (ed) (1996) J-aggregates. World Scientific, Singapore

    Google Scholar 

  25. Salvioli S, Ardizzoni A, Franceschi C, Cossarizza A (1997) JC-1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis. FEBS Lett 411:77–82

    Article  PubMed  CAS  Google Scholar 

  26. Maeda Y, Nunomura K, Ohtsubo E (1990) Differential scanning calorimetric study of the effect of intercalators and other kinds of DNA-binding drugs on the stepwise melting of plasmid DNA. J Mol Biol 215:321–329

    Article  PubMed  CAS  Google Scholar 

  27. Biver T, Secco F, Tine MR, Venturini M (2003) Equilibria and kinetics of the intercalation of Pt-proflavine and proflavine into calf thymus DNA. Arch Biochem Biophys 418:63–70

    Article  PubMed  CAS  Google Scholar 

  28. Bakalis LD, Knoester J (2000) Linear absorption as a tool to measure the exciton delocalization length in molecular assemblies. J Lumin 87–89:66–70

    Article  Google Scholar 

  29. Davydov AS (1971) Theory of molecular excitons. Plenum, New York

    Google Scholar 

  30. Potenza J, Mastropaolo D (1974) The crystal and molecular structure of the acetic acid solvate of 5,5′-dichloro-3,3′,9-triethylthiacarbocyanine bromide, a photographic sensitizing dye. Acta Cryst B 30:2353–2359

    Article  Google Scholar 

  31. Nakao K, Yakeno K, Yoshioka H, Nakatsu K (1979) Crystal structure of a methanol solvate of 3,3′-diethyl-9-phenylthiacarbocyanine iodide, a photographic sensitizing dye. Acta Cryst B 35:415–419

    Article  Google Scholar 

  32. Ushiroda S, Ruzycki N, Lu Y, Spitler MT, Parkinson BA (2005) Dye sensitization of the anatase (101) crystal surface by a series of dicarboxylated thiacyanine dyes. J Am Chem Soc 127:5158–5168

    Article  PubMed  CAS  Google Scholar 

  33. Shapiro BI (1994) Aggregates of cyanine dyes: photographic problems. Russ Chem Rev 63(3):231–255

    Article  Google Scholar 

  34. Scheblykin IG, Varnavsky OP, Verbouwe W, De Backer S, Van der Auweraer M, Vitukhnovsky AG (1998) Relaxation dynamics of excitons in J-aggregates revealing a two-component Davydov splitting. Chem Phys Lett 282:250–256

    Article  CAS  Google Scholar 

  35. Lampoura SS, Spitz C, Dähne S, Knoester J, Duppen K (2002) The optical dynamics of excitons in cylindrical J-aggregates. J Phys Chem B 106:3103–3117

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Dr. S. S. Lukashov (Institute of Molecular Biology and Genetics of NAS of Ukraine) for providing dye L-21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sorokin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guralchuk, G.Y., Sorokin, A.V., Katrunov, I.K. et al. Specificity of Cyanine Dye L-21 Aggregation in Solutions with Nucleic Acids. J Fluoresc 17, 370–376 (2007). https://doi.org/10.1007/s10895-007-0201-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-007-0201-5

Keywords

Navigation