Skip to main content
Log in

Examining Protein-Lipid Interactions in Model Systems with a New Squarylium Fluorescent Dye

  • Original Paper
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The applicability of newly synthesized squarylium dye Sq to probing the changes in physical characteristics of lipid bilayer on the formation of protein-lipid complexes has been evaluated. Lipid vesicles composed of zwitterionic phospholipid phosphatidylcholine (PC) and its mixtures with positively charged detergent cetyltrimethylammonium bromide (CTAB), anionic phospholipid cardiolipin (CL), and cholesterol (Chol) were employed as lipid component of model membrane systems while protein constituent was represented by lysozyme (Lz). Fluorescence intensity of Sq was found to decrease on Lz association with lipid bilayer. This effect was observed in all kinds of model systems suggesting that Sq is sensitive to modification of lipid bilayer physical properties on hydrophobic protein-lipid interactions. It was found that Sq spectral response to variations in Chol content depends on relative contributions of electrostatic and hydrophobic components of Lz-membrane binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kinnunen PKJ, Koiv A, Lehtonen JYA, Rytomaa M, Mustonen P (1991) Lipid dynamics and peripheral interactions of proteins with membrane surface. Chem Phys Lipids 73:181–207

    Article  Google Scholar 

  2. Gil T, Ipsen JH, Mouritsen OG, Sabra MC, Sperotto MM, Zuckermann MJ (1998) Theoretical analysis of protein organization in lipid membranes. Biochim Biophys Acta 1376:245–266

    PubMed  CAS  Google Scholar 

  3. Lee AG (2003) Lipid–protein interactions in biological membranes: a structural perspective. Biochim Biophys Acta 1612:1–40

    Article  PubMed  CAS  Google Scholar 

  4. Palsdottir H, Hunte C (2004) Lipids in membrane protein structures. Biochim Biophys Acta 1666:2–18

    Article  PubMed  CAS  Google Scholar 

  5. Dowhan W, Mileykovskaya E, Bogdanov M (2004) Diversity and versatility of lipid–protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 1666:19–39

    Article  PubMed  CAS  Google Scholar 

  6. Lee AG (2004) How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta 1666:62–87

    Article  PubMed  CAS  Google Scholar 

  7. Jensen MO, Mouritsen OG (2004) Lipids do influence protein function—the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666:205–226

    Article  PubMed  CAS  Google Scholar 

  8. Lakowicz JR (1999) Principles of fluorescent spectroscopy, Plenum Press, New York

    Google Scholar 

  9. Ioffe VM, Gorbenko GP, Domanov YeA, Tatarets AL, Patsenker LD, Terpetsching EA, Dyubko TS (2006) J Fluorescence 16, in press, doi: 10.1007/s10895-005-0018-2

  10. Stryer L (1995) Biochemistry, New York

  11. Ibrahim HR, Thomas U, Pellegrini A (2001) A helix-loop-helix peptide at the upper lip of the active site cleft of lysozyme confers potent antimicrobial activity with membrane permeabilization action. J Biol Chem 276:43767–43774

    Article  PubMed  CAS  Google Scholar 

  12. Ibrahim HR, Yamada M, Matsushita K, Kobayashi K, Kato A (1994) Enhanced bactericidal action of lysozyme to Escherichia coli by inserting a hydrophobic pentapeptide into its C terminus. J Biol Chem 269:5053–5063

    Google Scholar 

  13. Gulik-Krzywicki T, Shechter E, Luzzati V, Faure M (1969) Interactions of proteins and lipids: structure and polymorphism of protein-lipid-water phases. Nature 223:1116–1120

    Article  PubMed  CAS  Google Scholar 

  14. Sessa G, Weissmann G (1970) Incorporation of lysozyme into liposomes. A model for structure-linked latency. J Biol Chem 245:3295–3301

    PubMed  CAS  Google Scholar 

  15. Posse E, Arcuri BF, Morero RD (1994) Lysozyme interactions with phospholipid vesicles: relationships with fusion and release of aqueous content. Biochim Biophys Acta 1193:101–106

    Article  PubMed  CAS  Google Scholar 

  16. Dimitrova MN, Matsumura H, Terezova N, Neytchev V (2002) Binding of globular proteins to lipid membranes studied by isothermal titration calorimetry and fluorescence. Colloids Surf B: Biointerfaces 24:53–61

    Article  CAS  Google Scholar 

  17. Zschornig O, Paasche G, Thieme C, Korb N, Arnold K (2005) Modulation of lysozyme charge influences interaction with phospholipid vesicles. Colloids Surf B: Biointerfaces 42:69–78

    Article  CAS  Google Scholar 

  18. Subramanian M, Sheshadri BS, Venkatappa MP (1984) Interaction of cationic detergents. Cetyl- and dodecyl-trimethylammonium bromides, with lysozyme. J Biochem (Tokyo) 95:413–421

    CAS  Google Scholar 

  19. Terpetschnig E, Patsenker L, Tatarets A, Fedyunyaeva I, Borovoy I (2003) WO 03/087052 A2

  20. Oswald B, Patsenker L, Duschl J, Szmacinski H, Wolfbeis OS, Terpetschnig E (1999) Synthesis. Spectral properties and detection limits of reactive squarylium dyes, a new class of diode laser compatible fluorescent protein labels. Bioconjugate Chem 10:925–931

    Article  CAS  Google Scholar 

  21. Mui B, Chow L, Hope MJ (2003) Extrusion technique to generate liposomes of defined size. Meth Enzymol 367:3–14

    Article  PubMed  CAS  Google Scholar 

  22. Bartlett G (1959) Phosphorus assay in column chromatography. J Biol Chem 234:466–468

    PubMed  CAS  Google Scholar 

  23. Cheetham JC, Artymiuk PJ, Phillips DC (1992) Refinement of an enzyme complex with inhibitor bound at partial occupancy. Hen egg-white lysozyme and tri-N-acetylchitotriose at 1.75 Å resolution. J Mol Biol 224:613–628

    Article  PubMed  CAS  Google Scholar 

  24. Ivkov VG, Berestovsky GN (1981) Dynamic structure of lipid bilayer, Nauka, Moscow

    Google Scholar 

  25. Cantor CR, Shimmel PR (1984) Biophysical Chemistry, part II. Techniques for the study of biological structure and function, San Francisco

  26. Cevc G (1990) Membrane electrostatics. Biochim Biophys Acta 1031:311–382

    PubMed  CAS  Google Scholar 

  27. Tocanne J, Teissie J (1990) Ionization of phospholipids and phospholipid - supported interfacial lateral diffusion of protons in membrane model systems. Biochim Biophys Acta 1031:111–142

    PubMed  CAS  Google Scholar 

  28. Sankaram M, Marsh D (1993) Protein-lipid interactions with peripheral membrane proteins, Protein-lipid interactions, Elsevier, 127–162

  29. Zschornig O, Paasche G, Thieme C, Korb N, Fahrwald A, Arnold K (2000) Association of lysozyme with phospholipid vesicles is accompanied by membrane surface dehydration. Gen Physiol Biophys 19:85–101

    PubMed  CAS  Google Scholar 

  30. Ge M, Freed JH (2003) Hydration. structure, and molecular interactions in the headgroup region of dioleoylphosphatidylcholine bilayers: an electron spin resonance study. Biophys J 85:4023–4040

    PubMed  CAS  Google Scholar 

  31. Vedamuthu M, Singh S, Onganer Y, Bessire DR, Yin M, Quitevis EL, Robinson GW (1996) Universality in isomerization reactions in polar solvents. J Phys Chem 100:11907–11913

    Article  CAS  Google Scholar 

  32. Momicchioli F, Tatikolov AS, Vanossi D, Ponterini G (2004) Electronic structure and photochemistry of squaraine dyes: basic theoretical analysis and direct detection of the photoisomer of a symmetrical squarylium cyanine. Photochem Photobiol Sci 3:396–402

    Article  PubMed  CAS  Google Scholar 

  33. Haidekker MA, Brady T, Wen K, Okada C, Stevens HY, Snell JM, Frangos JA, Theodorakis EA (2002) Phospholipid-bound molecular rotors: synthesis and characterization. Bioorg Med Chem 10:3627–3636

    Article  PubMed  CAS  Google Scholar 

  34. Gaisenok VA, Sarzhevsky AM (1986) Anisotropy of absorption and luminescence of polyatomic molecules

  35. Tsunoda T, Imura T, Kadota M, Yamazaki T, Yamauchi H, Kwon KO, Yokoyama S, Sakai H, Abe M (2001) Effects of lysozyme and bovine serum albumin on membrane characteristics of dipalmitoylphosphatidylglycerol liposomes. Colloids Surf B: Biointerfaces 20:155–163

    Article  CAS  Google Scholar 

  36. Arnold K, Hoekstra D, Ohki S (1992) Association of lysozyme to phospholipid surfaces and vesicle fusion. Biochim Biophys Acta 1124:88–94

    PubMed  CAS  Google Scholar 

  37. Lehtonen JYA, Kinnunen PKJ (1994) Changes in the lipid dynamics of liposomal membranes induced by poly(ethylene glycol): free volume alterations revealed by inter- and intramolecular excimer-forming phospholipid analogs. Biophys J 66:1981–1990

    PubMed  CAS  Google Scholar 

  38. Zuckermann MJ, Heimburg T (2001) Insertion and pore formation driven by adsorption of proteins onto lipid bilayer membrane-water interfaces. Biophys J 81:2458–2472

    PubMed  CAS  Google Scholar 

  39. Stillinger FH, Weber TA (1983) Inherent structure in water. J Phys Chem 87:2833–2840

    Article  CAS  Google Scholar 

  40. Pinheiro TJT, Elove GA, Watts A, Roder H (1997) Structural and kinetic description of cytochrome c unfolding induced by the interaction with lipid vesicles. Biochem 36:13122–13132

    Article  CAS  Google Scholar 

  41. Tatulian SA, Biltonen RL, Tamm LK (1997) Structural changes in a secretory phospholipase A2 induced by membrane binding: a clue to interfacial activation? J Mol Biol 268:809–815

    Article  PubMed  CAS  Google Scholar 

  42. Touch V, Hayakawa S, Saitoh K (2004) Relationships between conformational changes and antimicrobial activity of lysozyme upon reduction of its disulfide bonds. Food Chem 84:421–428

    Article  CAS  Google Scholar 

  43. Crane JM, Tamm LK (2004) Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes. Biophys J 86:2965–2979

    Article  PubMed  CAS  Google Scholar 

  44. Costa-Filho AJ, Shimoyama Y, Freed JH (2003) A 2D-ELDOR study of the liquid-ordered phase in multilamellar vesicle membranes. Biophys J 84:2619–2633

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriya M. Ioffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ioffe, V.M., Gorbenko, G.P., Tatarets, A.L. et al. Examining Protein-Lipid Interactions in Model Systems with a New Squarylium Fluorescent Dye. J Fluoresc 16, 547–554 (2006). https://doi.org/10.1007/s10895-006-0092-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-006-0092-x

Keywords

Navigation