Skip to main content
Log in

A Novel Luminescence-Based Colorimetric Oxygen Sensor with a “Traffic Light” Response

  • Original Article
  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

We report a novel dual-lumophore oxygen sensor incorporating two lumophores: (1) the platinum(II) cyclometalated complex of the N^C^N-coordinating ligand 1,3,5-tri-(2-pyridyl)benzene and (2) Platinum octaethylporphyrin, which differ in both their emission colours and oxygen sensitivities. Sensor response is given by a dramatic change in emission colour, from red to green at different oxygen concentrations, due to the complete or partial luminescence quenching of one or both of the sensing elements. This approach enables the simple and rapid evaluation of the O2 concentration present, making it applicable to commercial technologies such as modified atmosphere packaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. I. Bergman (1968). Rapid-response atmospheric oxygen monitor based on fluorescence quenching. Nature 218, 396.

    Article  CAS  Google Scholar 

  2. E. R. Carraway, J. N. Demas, B. A. DeGraff, and J. R. Bacon (1991). Photophysics and photochemistry of oxygen sensors based on luminescent transition metal complexes. Anal. Chem. 63(4), 337–342.

    Article  CAS  Google Scholar 

  3. H. N. McMurray, P. Douglas, C. Busa, and M. S. Garley (1994). Oxygen quenching of tris(2,2'-bipyridine) ruthenium(II) complexes in thin organic films. J. Photochem. Photobiol. A 80(1–3), 283–288.

    Article  CAS  Google Scholar 

  4. J. N. Demas and B. A. DeGraff (1993). Luminescence-based sensors: Microheterogeneous and temperature effects. Sens. Actuators B 11(1–3), 35–41.

    Article  Google Scholar 

  5. P. Douglas and K. Eaton (2002). Response characteristics of thin film oxygen sensors, Pt and Pd octaethylporphyrins in polymer films, Sens. Actuators B 82(1–3), 1–9.

    Google Scholar 

  6. K. Eaton, B. Douglas, and P. Douglas (2004). Luminescent oxygen sensors: Time-resolved studies and modelling of heterogeneous oxygen quenching of luminescence emission from Pt and Pd octaethylporphyrin in thin polymer films. Sens. Actuators B 97(1), 2–12.

    Article  Google Scholar 

  7. Y. Amao, Y. Tabuchi, Y. Yamshita, and K. Kimura (2002). Novel optical oxygen sensing material: Metalloporphyrin dispersed in fluorinated poly(aryl ether ketone) films. Eur. Polym. J. 38(4), 675–681.

    Article  CAS  Google Scholar 

  8. R. N. Gillanders, M. C. Tedford, P. J. Crilly, and R. T. Bailey (2004). Thin film dissolved oxygen sensor based on platinum octaethylporphyrin encapsulated in an elastic fluorinated polymer. Anal. Chim. Acta 502(1), 1–6.

    Article  CAS  Google Scholar 

  9. P. Douglas and K. Eaton (2002). On the inappropriate use of gated emission measurements in oxygen quenching studies of luminescent thin film sensors. Sens. Actuators B 82(1), 48–53.

    Article  Google Scholar 

  10. K. Eaton (2002). A novel colorimetric oxygen sensor: Dye redox chemistry in a thin polymer film. Sens. Actuators B 85(1–2), 42–51.

    Article  Google Scholar 

  11. J. Kavandi, J. Callis, M. Gouterman, G. Khalil, D. Wright, E. Green, D. Burns, and B. McLachlan (1990). Luminescent barometry in wind tunnels. Rev. Sci. Instrum. 61, 3340–3347.

    Article  Google Scholar 

  12. F. Baldini, M. Bacci, F. Cosi, and A. D. Bianco (1992). Absorption based optical fibre oxygen sensor. Sens. Actuators B 7(1–3), 752–757.

    Article  Google Scholar 

  13. D. B. Papkovsky (1995). New oxygen sensors and their application to biosensing. Sens. Actuators B 29(1–3), 213–218.

    Article  Google Scholar 

  14. M. F. Choi and P. Hawkins (1996). A fibre-optic oxygen sensor based on contact charge-transfer absorption. Sens. Actuators B 30(3), 167–171.

    Article  Google Scholar 

  15. M. Smolander, E. Hurne, and R. Ahvenainen (1997). Leak indicators for modified-atmosphere packages. Trends Food Sci. 8(4), 101–105.

    Article  CAS  Google Scholar 

  16. Y. Yoshikawa, T. Nawata, M. Goto, and Y. Kondo (1982). Oxygen indicator adapted for printing or coating and oxygen-indicating device. US 4,349,509.

  17. Y. Yoshikawa, T. Nawata, M. Goto, and Y. Fujii (1979). Oxygen indicator. US 4,169,811.

  18. K. C. Krumhar and M. Karel (1992). Visual Indicator System. US 50,096,813.

  19. R. Ahvenainen, M. Eilamo, and E. Hurne (1997) .Detection of improper sealing and quality deterioration of modified-atmosphere-packaged pizza by a colour indicator. Food Control 8(4), 177–184.

    Article  Google Scholar 

  20. M. Smiddy, M. Fitzgerald, J. P. Kerry, D. B. Papkovsky, C. K. O'Sullivan, and G. G. Guilbault (2002). Use of oxygen sensors to non-destructively measure the oxygen content in modified atmosphere and vacuum packed beef: Impact of oxygen content on lipid oxidation. Meat Sci. 61(3), 285–290.

    Article  CAS  Google Scholar 

  21. M. Smiddy, N. Papkovskaia, D. B. Papkovsky, and J. P. Kerry (2002). Use of oxygen sensors for the non-destructive measurement of oxygen content in modified atmosphere and vacuum packs of cooked chicken patties: Impact of oxygen content on lipid oxidation. Food Res. Int. 35(6), 577–584.

    Article  CAS  Google Scholar 

  22. T. C. O'Riordan, H. Voraberger, J. P. Kerry, and D. B. Papkovsky (2005). Study of migration of active components of phosphorescent oxygen sensors for food packaging applications. Anal. Chim. Acta 530(1), 135–141.

    Article  Google Scholar 

  23. S. J. Farley, D. L. Rochester, A. L. Thompson, J. A. K. Howard, and J. A. G. Williams (2005). Controlling emission energy, self-quenching and excimer formation in highly luminescent N^C^N coordinated platinum(II) complexes, Inorg. Chem. In press.

  24. K. Kalyanasundaram (1992). Photochemistry of Polypyridine and Porphyrin Complexes, Academic Press, New York, p. 500.

    Google Scholar 

  25. Y. Le Grand (1957). Light, Colour and Vision, Chapman and Hall, London.

    Google Scholar 

  26. D. B. Judd and G. Wyszecki (1962). Color in Business, Science and Industry, Wiley, New York.

    Google Scholar 

  27. J. A. G. Williams, A. Beeby, E. S. Davies, J. A. Weinstein, and C. Wilson (2003). An alternative route to highly luminescent platinum(II) complexes: Cyclometalation with N^C^N-coordinating dipyridylbenzene ligands. Inorg. Chem. 42(26), 8609–8611.

    Article  PubMed  CAS  Google Scholar 

  28. C. A. Phillips (1996). Modified Atmosphere Packaging and its effects on the microbiological quality and safety of produce. Int. J. Food Sci. Tech. 31(6), 463–479.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

RCE would like to acknowledge the University of Wales Swansea for a Research Scholarship, and DLR the EPSRC and the University of Durham for a DTA studentship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel C. Evans.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, R.C., Douglas, P., Williams, J.A.G. et al. A Novel Luminescence-Based Colorimetric Oxygen Sensor with a “Traffic Light” Response. J Fluoresc 16, 201–206 (2006). https://doi.org/10.1007/s10895-005-0037-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-0037-9

KEY WORDS:

Navigation