Skip to main content
Log in

Preliminary Results of Experimental Studies from Low Pressure Inertial Electrostatic Confinement Device

  • Original Research
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

In this study, Turkey’s first low pressure inertial electrostatic confinement (IEC) device, constructed at the Saraykoy Nuclear Research and Training Center (SNRTC-IEC), is introduced and the first results are reported. This device was designed for neutronic fusion studies in terms of D–D reaction. The SNRTC-IEC device consists of spherical chamber 300 mm in diameter and a grid-type spherical cathode in which high negative voltage is applied at the center of chamber. The outer surface of the device held at ground potential has 10 ports to connect the vacuum pump, high voltage load, residual gas analyzer, ion sources and other peripherals. Cathode voltage is 85 kV and it is particularly emphasized that the SNRTC-IEC device is studied at low pressure (1−10 × 10−4 mbar). The maximum total neutron production rate is measured at around 2.4 × 104 neutrons per second for the medium grid cathode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.M. Subramanian, Diagnostic study of steady state advanced fuel (D–D and D-3He) fusion in an IEC device, PhD Dissertation, University of Wisconsin, (2004)

  2. S. Lee, S.H. Saw, J Fusion Energ. 30, 398–403 (2011)

    Article  Google Scholar 

  3. Y. Akgun, F. Erdogan, A.S. Bolukdemir, E. Kurt, T. Oncu, A. Alacakir, Plasma Dev. Oper. 17(4), 293–300 (2009)

    Article  Google Scholar 

  4. B.B. Cipiti, The fusion of advanced fuels to produce medical isotopes using inertial electrostatic confinement, PhD Dissertation, University of Wisconsin, (2004)

  5. D.C. Barnes, R.A. Nebel, L. Turner, Phys. Fluids B 5(10), 3651–3660 (1993)

    Article  ADS  Google Scholar 

  6. R.W. Bussard, The advent of clean nuclear fusion: Superperformance space power and propulsion, 57th International Astronautical Congress (2006)

  7. R.M. Meyer, S.K. Loyalka, M.A. Prelas, EEE Trans. Plasma Sci. 33(4), 1377–1394 (2005)

    Article  ADS  Google Scholar 

  8. R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, B.B. Cipiti, R. Radel, J.W. Weidner, Fusion Sci. Technol. 44(2), 564–566 (2003)

    Google Scholar 

  9. D.R. Boris, E. Alderson, G. Becerra, D.C. Donovan, B. Egle, G.A. Emmert, L. Garrison, G.L. Kulcinski, J.F. Santarius, C. Schuff, S.J. Zenobia, Phys. Rev. E 80, 036408 (2009)

    Article  ADS  Google Scholar 

  10. R.L. Hirsch, J. Appl. Phys. 38, 4522 (1967)

    Article  ADS  Google Scholar 

  11. P.T. Farnsworth, Electric discharge device for producing interaction between nuclei. U.S. Patent #3,258,402, patented June 28 (1966)

  12. G.H. Miley, Nucl. Instr. Meth. Phys. Res.A 422, 16–20 (1999)

    Article  ADS  Google Scholar 

  13. G.H. Miley, J. Nadler, T. Hochberg, Y. Gu, O. Barnouin, Fusion Technol. 19, 840–845 (1991)

    Google Scholar 

  14. G.H. Miley, J. Sved, Appl. Rad. Isot. 53, 779–783 (2000)

    Article  Google Scholar 

  15. R.A. Nebel, D.C. Barnes, Fusion Technol. 34, 28–45 (1998)

    Google Scholar 

  16. R.P. Ashley, G.L. Kulcinski, J.F. Santarius, S.K. Murali, G. Piefer, 18th IEEE/NPSS Symposium on Fusion Engineering, IEEE #99CH37050, (1999)

  17. H. Matsuura, T. Takaki, K. Funakoshi, Y. Nakao, K. Kudo, Nucl. Fusion 40(12), 1951–1954 (2000)

    Article  ADS  Google Scholar 

  18. M. Ohnishi, K.H. Sato, Y. Yamamoto, K. Yoshikawa, Nucl. Fusion 37, 611–619 (1997)

    Article  ADS  Google Scholar 

  19. M. Ohnishi, C. Hoshino, K. Yoshikawa, K. Masuda, Y. Yamamoto, Rev. Sci. Instrum. 71(2), 1210–1212 (2000)

    Article  ADS  Google Scholar 

  20. K. Yamauchi, K. Ogasawara, M. Watanabe, A. Okino, Y. Sunaga, E. Hotta, Fusion Technol. 39(3), 1182–1187 (2001)

    Google Scholar 

  21. M. Ohnishi, Kyoto University, Japan, private communication (2002), Overview of Japanese IEC Research Program, 4th U.S.-Japan Workshop on Inertial Electrostatic Confinement, Madison,Wisconsin (2002)

  22. M.J. Park, Seoul National University, South Korea, private communication (2004), RF Plasma Ions Sources of Compact Neutron Generators, 6th U.S.-Japan Workshop on Inertial Electrostatic Confinement, Tokyo, Japan (2003)

  23. V. Damideh, A. Sadighzadeh, A. Koohi, A. Aslezaeem, A. Heidarnia, N. Abdollahi, F.A. Davani, R. Damideh, J Fusion Energ 31, 109–111 (2012)

    Article  ADS  Google Scholar 

  24. E.H. Ebrahimi, R. Amrollahi, A. Sadighzadeh, M. Torabi, M. Sedaghat, R. Sabri, B. Pourshahab, V. Damideh, J Fusion Energ 32(1), 62–65 (2013). doi:10.1007/s10894-012-9524-6

    Article  ADS  Google Scholar 

  25. K.S. Krane, Introductory nuclear physics (Wiley, New York, 1988), pp. 529–530

    Google Scholar 

  26. S. Lee, Energy gain from thermonuclear fusion. http://www.plasmafocus.net/IPFS/S%20LeeSelection/V(2).pdf

  27. S.K. Murali, J.F. Santarius, G.L. Kulcinski, J Fusion Energ 29, 256–260 (2010)

    Article  ADS  Google Scholar 

  28. R.F. Radel, Dedection of highly enriched Uraniumand tungsten surface damage studies using a pulsed inertial electrostatic confinement fusion device, PhD Dissertation, University of Wisconsin, (2007)

  29. B.J. Egle, Nuclear fusion of advanced fuels using converging focused ion beams (University of Wisconsin, PhD Dissertation, 2010)

    Google Scholar 

  30. J.F. Santarius, G.L. Kulcinski, R.P. Ashley, D.R. Boris, B.B. Cipiti, S.K. Murali, G.R. Piefer, R.F. Radel, T.E. Uchytil, A.L. Wehmeyer, Overview of University of Wisconsin Inertial-Electrostatic Confinement Fusion Research, 16th ANS Topical Meeting on Fusion Energy, Madison WI, (2004)

  31. T. Takamatsu, K. Masuda, T. Kyunai, H. Toku, K. Yoshikawa, Nucl. Fusion 46, 142–148 (2006)

    Article  ADS  Google Scholar 

  32. K. Masuda, K. Taruya, T. Koyama, H. Hashimoto, K. Yoshikawa, H. Toku, Y. Yamamoto, M. Ohnishi, H. Horiike, N. Inoue, Fusion Technol. 39(3), 1202–1210 (2001)

    Google Scholar 

  33. S. Chapman, T.G. Cowling, The mathematical theory of non-uniform gases, 3rd. edition, Cambridge University Press, ISBN 0-521-40844-X, 88 1990

  34. Mean Free Path, Molecular collisions, http://hyperphysics.phyastr.gsu.edu/hbase/kinetic/menfre.html

  35. S.E. Van Bramer, Mean free path versus pressure and altitude, 1/18/98

  36. G.R. Piefer, J.F. Santarius, R.P. Ashley, G.L. Kulcinski, 16th ANS Topical meeting on fusion energy (2004)

Download references

Acknowledgments

The authors would like to thank Prof.Dr. Güneş Tanır, who is supervisor for the corresponding author, for her contributions on this work. This work was supported by the Turkish Atomic Energy Authority’s A3.H2.P2.02 project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Bölükdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bölükdemir, A.S., Akgün, Y. & Alaçakır, A. Preliminary Results of Experimental Studies from Low Pressure Inertial Electrostatic Confinement Device. J Fusion Energ 32, 561–565 (2013). https://doi.org/10.1007/s10894-013-9607-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-013-9607-z

Keywords

Navigation