Skip to main content
Log in

Improved Formula for (n,3He) Fusion Reactions Cross Sections Using Optical Model

  • Original Paper
  • Published:
Journal of Fusion Energy Aims and scope Submit manuscript

Abstract

Non-elastic cross-sections have been calculated by using optical model for (n, 3He) reactions at 14–15 MeV energy. The new empirical formula including optical model non-elastic effects by fitting two parameters for the (n, 3He) reaction cross-sections have been suggested. The excitation function character and reaction Q-values depending on the asymmetry term effect for the (n, 3He) reaction have been investigated. The obtained cross-section formula with new coefficients has been compared with the experimental data and the other fitting formulae existed in the literature and discussed. It has seen that the fit of new formula in this paper is greatly improved with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C. Rubbia, CERN/LHC/96-11 (EET) (1996)

  2. E. Betak et al., Nucl. Sci. Eng. 132, 295 (1999)

    Google Scholar 

  3. S.M. Qaim, Handbook of Spectroscopy, vol. 3 (CRC Press, Florida, 1981)

    Google Scholar 

  4. R.A. Forrest, AERE R 12419 (Harwell, UK, 1986)

    Google Scholar 

  5. A.Yu. Konobeyev, Yu.A. Korovin, Nucl. Instrum. Methods B. 103, 15 (1995)

    Article  ADS  Google Scholar 

  6. C.H.M. Broeders, A.Yu. Konobeyev, Nucl. Phys. A. 780, 130 (2006)

    Article  ADS  Google Scholar 

  7. C.H.M. Broeders, A.Yu. Konobeyev, Appl. Radiat. Isot. 65, 454 (2007)

    Article  Google Scholar 

  8. M. Belgaid, M. Asghar, Nucl. Instrum. Methods B. 142, 463 (1998)

    Article  ADS  Google Scholar 

  9. M. Belgaid, T. Segueni, F. Kadem, M. Asghar, Nucl. Instrum. Methods B. 201, 545 (2003)

    Article  ADS  Google Scholar 

  10. M.B. Chadwick, P.G. Young, S. Chiba, S.C. Frankle, G.M. Hale, H.G. Hughes, A.J. Koning, R.C. Little, R.E. Macfarlane, R.E. Prael, L.S. Waters, Nucl. Sci. Eng. 131, 293 (1999)

    Google Scholar 

  11. S. Şahin et al., Fusion Technol. 10, 84 (1986)

    Google Scholar 

  12. M. Übeyli, E. Tel, J. Fusion Energy. 22, 2 (2003)

    Google Scholar 

  13. V.M. Bychkov, A.B. Pashchenko, V.I. Plyaskin, Voprosi Atomnoy Nauki I Techniki. Jadernye Konstanty (Nucl. Constants). 4(31), 48 (1978)

    Google Scholar 

  14. V.M. Bychkov, V.N. Manokhin, A.B. Pashchenko, V.I. Plyaskin, Voprosi Atomnoy Nauki I Techniki. Jadernye Konstanty (Nucl. Constants). 1(32), 27 (1979)

    Google Scholar 

  15. A.Yu. Konobeyev, Yu.A. Korovin, Atom. Energy 85, 556 (1998)

    Google Scholar 

  16. M. Belgaid, M. Asghar, Appl. Radiat. Isot. 49, 1497 (1998)

    Article  Google Scholar 

  17. F.I. Habbani, K.T. Osman, Appl. Radiat. Isot. 54, 283 (2001)

    Article  Google Scholar 

  18. V.N. Levkovski, Sov. J. Phys. 18, 361 (1974)

    Google Scholar 

  19. E. Tel, A. Aydın, G. Tanır, Phys. Rev. C. 75, 34614 (2007)

    Article  ADS  Google Scholar 

  20. S.A. Badikov, A. Pashchenko, INDC(CCP) 325 (1991)

  21. E. Tel, B. Şarer, Ş. Okuducu, A. Aydın, G. Tanır, J. Phys. G Nucl. Part. Phys. 29, 2169 (2003)

    Article  ADS  Google Scholar 

  22. I. Kumabe, K. Fukuda, J. Nucl. Sci. Technol. 24, 83 (1987) and its references

    Article  Google Scholar 

  23. M. Belgaid, A. Tassadit, F. Kadem, A. Amokrane, Nucl. Instrum. Methods B. 239, 303 (2005)

    Article  ADS  Google Scholar 

  24. A.Yu. Konobeyev, Yu.A. Korovin, Nuovo Cimento. 112A, 1001 (1999)

    ADS  Google Scholar 

  25. A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Nucl. Instrum. Methods B. 108, 233 (1996)

    Article  ADS  Google Scholar 

  26. A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Nuovo Cimento. 111A, 445 (1998)

    ADS  Google Scholar 

  27. A.I. Dityuk, A.Yu. Konobeyev, V.P. Lunev, Yu.N. Shubin, Voprosi Atomnoy Nauki I Techniki. Jadernye Konstanty (Nucl. Constants). 1, 129 (1996)

    Google Scholar 

  28. Y. Lishan, J. Yuling, Comm. Nucl. Data Program. 7, 95 (1992)

    Google Scholar 

  29. S.M. Qaim, H.V. Klapdor, H. Reiss, Phys. Rev. C. 22, 1371 (1980)

    Article  ADS  Google Scholar 

  30. S.M. Qaim, Radiochim. Acta 25, 13 (1978)

    Google Scholar 

  31. S.M. Qaim, J. Inorg. Nucl. Chem. 32, 1799 (1970)

    Article  Google Scholar 

  32. R. Pepelnik, B. Anders, B.M. Bahal, M. Farooq, NEANDC(E)-262 U32(5) (1985)

  33. B.M. Bahal, R. Pepelnik, NEANDC(E)-252/U28(5) (1984)

  34. L. Husain, A. Bari, P.K. Kuroda, J. Inorg. Nucl. Chem. 30, 3145 (1968)

    Article  Google Scholar 

  35. J. Csikai, A. Szalay, Nucl. Phys. 68, 546 (1965)

    Article  Google Scholar 

  36. D. Wilmore, P.E. Hodgson, Nucl. Phys. 55, 673 (1964)

    Article  Google Scholar 

  37. F.D. Bechetti, G.W. Grenlees, Phys. Rev. 182, 1190 (1969)

    Article  ADS  Google Scholar 

  38. J.C. Ferrer, J.D. Carlson, J. Rapaport, Phys. Lett. 62B, 399 (1976)

    ADS  Google Scholar 

  39. A. Aydın et al., J. Fusion Energy. 27(4), 314 (2008)

    Article  Google Scholar 

  40. F. Weisskopf, D.E. Ewing, Phys. Rev. 57, 472 (1940)

    Article  ADS  Google Scholar 

  41. K. Kikuchi, M. Kawai, Nuclear Matter and Nuclear Reactions (Amsterdam, North Holland, 1968), p. 262

    Google Scholar 

  42. M.Q. Makino, C.N. Waddel, R.M. Eisberg, Nucl. Instrum. Methods. 60, 109 (1968)

    Article  ADS  Google Scholar 

  43. C.M. Perey, F.G. Perey, At. Nucl. Data Tables. 13, 293 (1974)

    Article  ADS  Google Scholar 

  44. I. Boztosun, Phys. Rev. C. 66(2), 024610 (2002)

    Article  ADS  Google Scholar 

  45. A. Chatterjee, K.H.N. Murthy, S.K. Gupta, Pramana. 16(5), 391 (1981)

    Article  ADS  Google Scholar 

  46. S. Ait-Tahar, Nucl. Phys. 13, 121 (1987)

    Article  Google Scholar 

  47. S.M. Qaim, IAEA-TEC-DOC-457, 89 (1998)

  48. Z. Zhixiang, Z. Delin, Nucl. Sci. Eng. 99, 367 (1988)

    Google Scholar 

  49. H.L. Pai et al., Nucl. Phys. A. 164, 526 (1971)

    Article  ADS  Google Scholar 

  50. H.L. Pai, D.G. Andrews, Can. J. Phys. 56, 944 (1978)

    ADS  Google Scholar 

  51. I. Kumabe, J. Nucl. Sci. Technol. 18(8), 563 (1981)

    Article  Google Scholar 

  52. C.H.M. Broeders, A.Yu. Konobeyev, Y.A, Korovin, V.P. Lunev, M. Blann, ALICE/ASH pre-compound and evaporation model code system for calculation of excitation functions, energy and angular distributions of emitted particles in nuclear reactions at intermediate energies. FZK 7183: (2006), http://bibliothek.fzk.de/zb/berichte/FZKA7183.pdf. Accessed February 2008

  53. V. Mclane, CSISRS experimental nuclear data file, National Nuclear Data Center Brookhaven National Laboratory (1997), http://www.nndc.bnl.gov/, EXFOR is accessed on line at http://www.nndc.bnl.gov/exfor. Accessed February 2008

  54. O. Bersillon, SCAT-2 code, OCDE-NEA-Data Bank-Computer Program Service, Package ID. NEA0829/03 (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Bölükdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bölükdemir, M.H., Tel, E., Aktı, N.N. et al. Improved Formula for (n,3He) Fusion Reactions Cross Sections Using Optical Model. J Fusion Energ 29, 13–18 (2010). https://doi.org/10.1007/s10894-009-9220-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10894-009-9220-3

Keywords

Navigation