Skip to main content
Log in

Collaterals and Bifurcations of Axons of Spinal Cord Motoneurons of the Lamprey Lampetra fluviatilis

  • Morphological Basics for Evolution of Functions
  • Published:
Journal of Evolutionary Biochemistry and Physiology Aims and scope Submit manuscript

Abstract

Structure of central projections of the motoneuron axons of the spinal cord of the lamprey Lampetra fluviatilis was studied using labeling with horseradish peroxidase in vitro. Axons of the lamprey spinal cord motoneurons were found to have collaterals terminating in ventral columns of the white matter, in which they establish contacts with dendrites of adjacent motoneurons, which can be considered as a substrate of the intermotoneuron interaction. Some axons of motoneurons give bifurcations to two equal branches connected with two neighboring ventral roots, which seems to facilitate propagation of rhythmic activity of locomotor generator in the rostro caudal direction for providing continuous wave of contraction of myotome muscles in the course of undulating movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Eccles, J.C., Fatt, P., and Koketsu, K., Cholinergic and Inhibitory Synapses in a Pathway from Motor—Axon Collaterals to Motoneurons, J. Physiol., 1954, vol. 126, pp. 524–562.

    PubMed  Google Scholar 

  2. Kubota, K. and Brookhart, J.M., Recurrent Facilitation of Frog Motoneurons, J. Neurophysiol., 1963, vol. 26, pp. 877–893.

    PubMed  Google Scholar 

  3. Grinnel, A.D., A Study of the Interaction between Motoneurons, J. Physiol., 1966, vol. 182, pp. 182–648.

    Google Scholar 

  4. Bando, T., Synaptic Organization in Teleost Spinal Motoneurons, Jap. J. Physiol., 1975, vol. 25, pp. 317–331.

    PubMed  Google Scholar 

  5. Shapovalov, A.I. and Shiriaev, B.I., Two Types of Electronic EPSPs Evoked in Amphibian Motoneurons by Ventral Root Stimulation, Exp. Brain Res., 1978, vol. 33, pp. 313–323.

    PubMed  Google Scholar 

  6. Tamarova, Z.A., Electrotonic Excitatory Postsynaptic Potentials Evoked by Stimulation of Ventral Roots in Motoneurons and Muller's Axons of the Lamprey Lampetra fluviatilis, Zh. Evol. Biokhim. Fiziol., 1978, vol. 14, pp. 581–588.

    PubMed  Google Scholar 

  7. Shapovalov, A.I. and Shiriaev, B.I., Study of Synaptic Interaction of Individual Motoneurons of the Isolated Spinal Cord of Frogs, Neirofiziol., 1984, vol. 16, pp. 619–630.

    Google Scholar 

  8. Karamyan, O.A. and Suderevskaya, E.I., Synaptic Interactions of Individual Motoneurons of the Carp Spinal Cord, Neirofiziol., 1986, vol. 18, pp. 262–266.

    Google Scholar 

  9. Velumyan, A.A., Recurrent Inhibition in Motoneurons of the Avian Spinal Cord, Dokl. Akad. Nauk SSSR, 1982, vol. 263, pp. 1500–1502.

    PubMed  Google Scholar 

  10. Chmykhova, N.M., Karamyan, O.A., Kozhanov, V.M., and Clemann, H.-P., Recurrent Axonal Collaterals of Turtle Lumbar Motoneurons, Tsitologiya, 2003, vol. 45, pp. 994–1004.

    Google Scholar 

  11. Wilson, V.J. and Burgess, P.R., Disinhibition in the Cat Spinal Cord, J. Neurophysiol., 1962, vol. 25, pp. 392–404.

    PubMed  Google Scholar 

  12. Gogan, P., Gueritaud, J.P., Horcholle-Bossavit, G., and Tyc-Dumont, S., Direct Excitatory Interaction between Spinal Motoneurons of the Cat, J. Physiol., 1977, vol. 272, pp. 755–767.

    PubMed  Google Scholar 

  13. Karamyan, O.A., Kozhanov, V.M., and Chmykhova, N.M., Mechanisms of Motoneuron Interaction in the Isolated Spinal Cord of Young Rats, Neirofiziol., 1988, vol. 20, pp. 243–250.

    Google Scholar 

  14. Eccles, J.C., Kostyuk, P.G., and Schmidt, R.F., Central Pathways Responsible for Depolarization of Primary Afferent Fibres, J. Physiol., 1962, vol. 161, pp. 237–257.

    Google Scholar 

  15. Barron, D.H. and Matthews, B.H.C., The Interpretation of Potential Changes in the Spinal Cord, J. Physiol., 1938, vol. 92, pp. 276–321.

    Google Scholar 

  16. Grinnell, A.D., Electrical Interaction between Antidromically Stimulated Frog Motoneurons and Dorsal Root Afferents: Enhancement by Gallamine and TEA, J. Physiol., 1970, vol. 210, no.1, pp. 17–43.

    PubMed  Google Scholar 

  17. Shapovalov, A.I. and Shiriaev, B.I., Recurrent Interactions between Individual Motoneurons and Dorsal Root Fibres in the Frog, Exp. Brain Res., 1980, vol. 38, pp. 115–116.

    Article  PubMed  Google Scholar 

  18. Tamarova, Z.A., Shapovalov, A.I., and Shiriaev, B.I., Synaptic Effects in Terminals of Individual Primary Afferent Fibers Connected Mono-and Polysynaptically with Spinal Cord Motoneurons, Fiziol. Zh. SSSR im. I.M. Sechenova, 1981, vol. 67, pp. 1511–1520.

    PubMed  Google Scholar 

  19. Cullheim, S., Kellerth, J., and Conradi, S., Evidence for Direct Interconnections between Cat Spinal Motoneurons via the Recurrent Collaterals: A Morphological Study Using Intracellular Injection of Horseradish Peroxidase, Brain Res., 1977, vol. 132, pp. 1–10.

    Article  PubMed  Google Scholar 

  20. Cullheim, S., Lipsenthal, L., and Burke, R.E., Direct Monosynaptic Contacts between Type-Identified Motoneurons in the Cat, Brain Res., 1984, vol. 308, pp. 196–199.

    Article  PubMed  Google Scholar 

  21. Ruigrok, T.J.H., Crowe, A., and Ten Donkelaar, H.J., Morphology of Lumbar Motoneurons Innervating Hindlimb Muscles in the Turtle Pseudemys scripta elegans: an Intracellular Horseradish Peroxidase Study, J. Comp. Neurol., 1984, vol. 230, pp. 413–425.

    Article  PubMed  Google Scholar 

  22. Chmykhova, N.M., Karamyan, O.A., and Kozhanov, V.M., Study of Morphological Bases of Motoneuron Interaction in the Isolated Spinal Cord of Young Rats Using Horseradish Peroxidase, Neirofiziol., 1988, vol. 20, pp. 340–350.

    Google Scholar 

  23. Velumyan, A.A. and Polyakova, L.A., Demonstration of Recurrent Collaterals of Motor Axons in the Chicken Embryo Using Horseradish Peroxidase Transport, Zh. Evol. Biokhim Fiziol., 1992, vol. 28, pp. 86–89.

    Google Scholar 

  24. Chmykhova, N.M. and Babalian, A.L., Structure of Recurrent Axon Collaterals of Frog Lumbar Motoneurons as Revealed by HRP Labeling, Brain Res., 1993, vol. 603, pp. 289–295.

    Article  PubMed  Google Scholar 

  25. Adanina, V., Vesselkin, N.P., Rio, J.P., and Reperant, J., Organization of Motoneurons of the Spinal Cord of Sturgeons, Zh. Evol. Biokhim. Fiziol., 1996, vol. 32, pp. 605–612.

    Google Scholar 

  26. Adanina, V., Batueva, I.V., Chmykhova, N.M., and Vesselkin, N.P., Axon Collaterals of Motoneurons in Lamprey Spinal Cord, V Int. Congr. of Vertebrate Morphology, Bristol, J. Morphol., 1997, vol. 232, p. 228.

    Google Scholar 

  27. Adams, J.C., Heavy Metal Intensification of DAB-Based HRP Reaction Product, J. Histochem. Cytochem., 1981, vol. 29, pp. 775.

    PubMed  Google Scholar 

  28. Weinberg, R.J. and Van Eyck, S.L., A Tetramethyl-benzidine/tungstate Reaction for Horseradish Peroxidase Histochemistry, J. Histochem. Cytochem., 1991, vol. 39, pp. 1143–1148.

    PubMed  Google Scholar 

  29. Shupliakov, O., Wallen, P., and Grillner, S., Two Types of Motoneurons Supplying Dorsal Fin Muscles in Lamprey and Their Activity during Fictive Locomotion, J. Comp. Neurol., 1992, vol. 321, pp. 112–123.

    Article  PubMed  Google Scholar 

  30. Grillner, S., Deliagina, T., Ekeberg, O., El Manira, A., Hill, R.H., Lansner, A., Orlovsky, G.N., and Wallen, P., Neuronal Networks That Co-ordinate Locomotion and Body Orientation in Lamprey, TINS, 1995, vol. 18, pp. 270–279.

    PubMed  Google Scholar 

  31. Roberts, A., Walford, A., Soffe, S.R., and Yoshida, M., Motoneurons of the Axial Swimming Muscles in Hatchling Xenopus Tadpoles: Features, Distribution, and Central Synapses, J. Comp. Neurol., 1999, vol. 411, pp. 472–486.

    Article  PubMed  Google Scholar 

  32. Szekely, G., The Morphology of Motoneurons and Dorsal Root Fibres in the Frog's Spinal Cord, Brain Res., 1976, vol. 103, pp. 275–290.

    Article  PubMed  Google Scholar 

  33. Erulkar, S.D. and Soller, R.W., Interactions among Lumbar Motoneurons on Opposite Sides of the Frog Spinal Cord: Morphological and Electrophysiological Studies, J. Comp. Neurol., 1980, vol. 192, pp. 473–478.

    Article  PubMed  Google Scholar 

  34. Light, A.R. and Metz, C.B., The Morphology of Spinal Cord Efferent and Afferent Neurons Contributing to the Ventral Roots of the Cat, J. Comp. Neurol., 1978, vol. 179, pp. 501–516.

    Article  PubMed  Google Scholar 

  35. Rovainen, C.M., Neurobiology of Lampreys, Physiol. Rev., 1979, vol. 59, pp. 1007s–1077.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Zhurnal Evolyutsionnoi Biokhimii i Fiziologii, Vol. 41, No. 4, 2005, pp. 371–377.

Original Russian Text Copyright © 2005 by Adanina, Vesselkin, Rio, Reperant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adanina, V.O., Vesselkin, N.P., Rio, JP. et al. Collaterals and Bifurcations of Axons of Spinal Cord Motoneurons of the Lamprey Lampetra fluviatilis . J Evol Biochem Phys 41, 465–472 (2005). https://doi.org/10.1007/s10893-005-0083-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10893-005-0083-6

Keywords

Navigation