Skip to main content
Log in

Mathematical Simulation of the Migration of Radionuclides in a Soil Medium Under Nonisothermal Conditions with Account for Catalytic Microparticles and Nonlinear Processes

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The problem of mathematical simulation of the vertical migration of radionuclides in a catalytic porous medium under nonisothermal conditions is considered. A numerical solution of the corresponding one-dimensional nonlinear boundary-value problem is obtained by the finite difference method. Numerical experiments are carried out and their analysis is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Entov, S. Numerov, P. Polubarinova-Kochina, and I. Charnyi (Eds.), Development of Studies in the USSR on the Theory of Filtration (1917–1967) [in Russian], Nauka, Moscow (1969).

  2. N. N. Verigin and B. S. Sherzhukov, Diffusion and mass transfer during filtration of liquids in porous media, in: Development of Studies in the USSR on the Theory of Filtration (1917–1967) [in Russian], Nauka, Moscow (1969), pp. 237–313.

  3. I. V. Sergienko, V. V. Skopetskii, and V. S. Deineka, Mathematical Simulation and Investigation of the Processes Proceeding in Inhomogeneous Media [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  4. S. I. Lyashko, Optimization and Mathematical Simulation of Underground Water Mass Transfer [in Russian], Naukova Dumka, Kiev (1998).

    Google Scholar 

  5. A. P. Vlasyuk and M. Kuzlo, Experimental investigations of some of the parameters of filtration of salt solutions in sandy soils, in: Melioration and Water Handling Facilities: Interdepartmental Thematic Scientific Collection [in Russian] (2000), pp. 43–46.

  6. V. M. Prokhorov (R. M. Aleksakhin Ed.), Migration of Radioactive Foulings in Soils [in Russian], Énergoizdat, Moscow (1981).

  7. Ya. I. Burak and E. Ya. Chaplya, The starting principles of the mathematical model of heterodiffusional transfer of radionuclides in the near-surface layers of Earth, Dop. Nats. Akad. Nauk Ukrainy, 10, 59–63 (1993).

    Google Scholar 

  8. P. Bossew and G. Kirchner, Modelling the vertical distribution of radionuclides in soil. Part 1: The convection–dispersion equation revisited, J. Environ. Radioactivity, 73, 127–150 (2004); doi:https://doi.org/10.1016/j.jenvrad.2003.08.006.

    Article  Google Scholar 

  9. A. P. Vlasyuk and O. P. Ostapchuk, Mathematical Simulation of Salt Solution Transfer during Filtration of Underground Water in Large Masses of Ground [in Russian], Nats. Univ. Vodn. Khoz. i Prirodopol′z., Rovno (2015).

    Google Scholar 

  10. P. P. Zolotarev and M. M. Dubinin, About the equations describing internal diffusion in adsorbent granules, Dokl. Akad. Nauk SSSR, 210, No. 1, 136–139 (1973).

    Google Scholar 

  11. E. Ruckenstein, A. Vaidyanathan, and G. Youngquist, Sorption by solids with bidisperse pore structures, Chem. Eng. Sci., 26, 1305–1318 (1971); doi:https://doi.org/10.1016/0009-2509(71)80051-9.

    Article  Google Scholar 

  12. I. N. Bekman, The Theory of Diffusion in Dispersion Media [in Russian], Moskovsk. Gos. Univ., Moscow–Nal′chik (2008).

    Google Scholar 

  13. W. C. Conner and J. P. Fraissard, Fluid Transport in Nanoporous Materials, Springer in cooperation with NATO Public Diplomacy Division, Dordrecht, The Netherlands (2006).

    Book  Google Scholar 

  14. J. Kärger, D. M. Ruthven, and D. N. Theodorou, Diffusion in Nanoporous Materials, Wiley-VCH, Weinheim, Germany (2012).

    Book  Google Scholar 

  15. M. R. Petryk, J. Fraissard, and D. M. Mykhalyk, Modeling and analysis of concentration fields of nonlinear competitive two-component diffusion in medium of nanoporous particles, J. Automat. Inform. Sci., 41, 13–23 (2009); doi:https://doi.org/10.1615/JAutomatInfScien.v41.i8.20.

    Article  Google Scholar 

  16. J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. M. Haynes, N. Pernicone, et al., Recommendations for the characterization of porous solids (Technical Report), Pure Appl. Chem., 66, No. 8, 1739−1758 (1994); doi:https://doi.org/10.1351/pac199466081739.

    Article  Google Scholar 

  17. N. Natarajan and G. Suresh Kumar, Radionuclide and colloid co-transport in a coupled fracture–skin–matrix system, Colloids Surf. A: Physicochem. Eng. Aspects, 370, Issues 1−3, 49–57 (2010); doi:https://doi.org/10.1016/j.colsurfa.2010.08.045.

    Article  Google Scholar 

  18. T. Cheng and J. E. Saiers, Colloid-facilitated transport of cesium in vadose-zone sediments: the importance of flow transients, Environ. Sci. Technol., 44, 7443–7449 (2010); doi:https://doi.org/10.1021/es100391j.

    Article  Google Scholar 

  19. O. Klimenko, A machine for inserting meliorants in a liquid state, Vestn. Rovensk. Gos. Tekh. Univ., Collect. of Sci. Works, Issue 1 (3), 161–166 (2000).

  20. A. P. Vlasyuk, V. V. Zhukovskyy, and M. M. Bondarchuk, Mathematical modelling of vertical migration of radionuclides in catalytic porous media with traps in linear case, in: Proc. 5th Int. Sci. Conf. of Students and Young Scientists "Theoretical and Applied Aspects of Cybernetics" (2015), pp. 208–219.

  21. A. P. Vlasyuk and V. V. Zhukovskyy, Mathematical modelling of vertical migration of radionuclides in unsaturated porous media in non-isothermal conditions one-dimensional case, Abstr. XXIV Int. Conf. "Problems of Decision Making under Uncertainties" (2014), pp. 110–111.

  22. A. P. Vlasyuk and V. V. Zhukovskii, Mathematical simulation of vertical migration of radionuclides in a catalytic porous medium, Vestn. Kievsk. Nats. Univ., Ser. Fiz.-Mat. Nauk, Issue 1, 89–95 (2015).

  23. A. P. Vlasyuk and V. V. Zhukovskii, Mathematical simulation of vertical migration of radionuclides in a catalytic porous medium in a nonlinear case, in: Mathematical and Computer Simulation, Series: Technical Sciences, Collect. of Sci. Works, Issue 12, 161–172 (2015).

  24. J. Simunek, D. Jacques, G. Langergraber, S. A. Bradford, M. Šejna, and M. T. van Genuchten, Numerical modeling of contaminant transport using HYDRUS and its specialized modules, J. Indian Inst. Sci., 93, 265–284 (2013).

    Google Scholar 

  25. B. P. Demidovich, I. A. Maron, and É. Z. Shuvalova, Numerical Methods of Analysis [in Russian], Nauka, Moscow (1967).

    MATH  Google Scholar 

  26. A. A. Samarskii, The Theory of Difference Schemes, Textbook for universities specializing in "Applied Mathematics" [in Russian], Nauka, Moscow (1989).

    Google Scholar 

  27. A. P. Vlasyuk and P. M. Martynyuk, Numerical Solution of the Problems of Consolidation and Filtration-Induced Disturbance of Soils under Heat and Mass Transfer Conditions by the Method of Radial Basis Functions [in Russian], Nats. Univ. Vodn. Khoz. i Prirodopol′z., Rovno (2010).

    Google Scholar 

  28. Modelling the Migration and Accumulation of Radionuclides in Forest Ecosystems, Report, International Atomic Energy Agency, Vienna (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Vlasyuk.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 6, pp. 1457–1469, November–December, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vlasyuk, A.P., Zhukovskii, V.V. Mathematical Simulation of the Migration of Radionuclides in a Soil Medium Under Nonisothermal Conditions with Account for Catalytic Microparticles and Nonlinear Processes. J Eng Phys Thermophy 90, 1386–1398 (2017). https://doi.org/10.1007/s10891-017-1697-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1697-4

Keywords

Navigation