Skip to main content
Log in

Shock Waves in Inert and Reactive Media

  • REVIEWS
  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

“Shock waves are of special interest from a whole number of aspects. On the one hand, where attempts at integrating equations without introducing discontinuities (i.e., shock waves) lead to these or those paradoxes and to the impossibility of solving these equations, the shock wave theory resolves paradoxes and permits creating regimes of motion under any conditions. One the other hand, shock waves themselves are a paradoxical event. They are paradoxical in the sense that without making any assumptions about dissipative forces — about viscosity and heat conduction — we obtain, from elementary considerations, laws, according to which there is an increase in entropy, i.e., laws, according to which the processes proceeding in the shock wave are irreversible.”

Ya. B. Zel’dovich, 1946

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Igra and F. Seiller (Eds.), Experimental Methods of Shock Wave Research, Springer-Verlag, Berlin, Heidelberg (2016).

    Google Scholar 

  2. Peter O. K. Krehl, History of Shock Waves, Explosions and Impact. A Chronological and Biographical Reference, Springer-Verlag, Berlin–Heidelberg (2009).

    Google Scholar 

  3. G. Ben-Dor, O. Igra, and T. Elperin (Eds.), Handbook of Shock Waves, Vols. 1, 2, 3, Academic Press, San Diego, CA, USA (2001).

    Google Scholar 

  4. N. A. Fomin, How the term "shock waves" came into being, J. Eng. Phys. Thermophys., 89, No. 4, 1017−1065 (2016).

    Article  Google Scholar 

  5. N. A. Fomin, Development of the Detonation Theory, Preprint No. 2 of the A. V. Luikov Heat and Mass Transfer Institute of the National Academy of Sciences of Belarus, Izd. Otd. ITMO NAN Belarusi, Minsk (2016).

  6. N. A. Fomin, Development of the shock tube technology, beginning in the 19th century, in persons, in: V. A. Levin, N. A. Fomin, and V. E. Fortov (Eds.), Physics of Shock Waves, Combustion, Detonation, and of Nonequilibrium Processes [in Russian], Izd. Otd. ITMO NAN, Belarusi, Minsk (2014), pp. 279–316.

    Google Scholar 

  7. N. A. Fomin, 110 years of experiments on shock tubes, J. Eng. Phys. Thermophys., 83, No. 6, 1118−1135 (2010).

    Article  Google Scholar 

  8. S.-D. Poisson, Mémoire sur la théorie du son, J. lÉcole Polytech. (Paris), 7-e cahier, 319–392 (1808).

  9. B. Riemann, Über die Fortpflanzung ebener Luftwellen von endlicher Schwingungsiveite, Abhandlungen der Gesellschaft der Wissenschaften zu Gőttingen. Mathematisch-physikalische Klasse, 8, 43 (1860).

    Google Scholar 

  10. W. J. M. Renkin, On the thermodynamic theory of waves of finite longitudinal disturbance, Proc. Roy. Soc. London, 18, 80–83 (1870).

    Article  Google Scholar 

  11. P. H. Hugoniot, Mémoire sur la propagation du mouvement dans les corps et plus spécialement dans les gaz parfaits. Part I, J. lÉcole Polytech. (Paris), 57-e cahier, 3–97; Part II. 58-e cahier, 1–125 (1887).

  12. A. Toepler, Beobachtungen nach einer neuen optischen Methode. Ein Beitrag zur Experimentalphysik. , Max Cohen & Sohn, Bonn (1864).

    MATH  Google Scholar 

  13. E. Mach and P. Salcher, Photographische Fixierung der durch Projectile in der Luft eingeleiteten Vorgänge, Sitzungsber. Akad. Wiss. Wien, 95, 764–778 (1887).

    Google Scholar 

  14. P. Vieille, Sur les discontinuites produites par la détente brusque de gas comprimes, Comptes rendus hebdomadaires des séances de lAcadémie des Sciences de Paris, 129, 1228–1230 (1899).

    Google Scholar 

  15. V. A. Mikhel′son, On the normal rate of ignition of detonating gas mixtures, Uch. Zap. Imp. Moskovsk. Univ., Otd. Fiz.-Mat., Collected Works, Issue 10, 1–92 (1893).

  16. L. Rayleigh, Aerial plane waves of finite amplitude, Proc. Roy. Soc. London, Ser. A, 84, 247–284 (1910).

    Article  MATH  Google Scholar 

  17. G. I. Taylor, The conditions necessary for discontinuous motions in gases, Proc. Roy. Soc. London, Ser. A, 84, 371–377 (1910).

    Article  MATH  Google Scholar 

  18. G. G. Stokes, On a difficulty in the theory of sound, Philos. Mag., Series 3, 33, 349–356 (1848).

    Article  Google Scholar 

  19. G. G. Chernyi, On the history of the development of the concept of discontinuous fluid motions, Aéromekh. Gaz. Dinam., No. 2, 83–92 (2003).

  20. N. Manson, Historique de la decouverte de l’onde de detonation, J. Phys., Colloque C4, Supplément au Nr. 9, 48, 7–37 (1987).

  21. G. Baudun, La détonation: chronologie des travaux de modélisation dans les explosifs condensés, Sixièmes journées scientifiques Paul Vieille, ENSTA, Paris (2009).

    Google Scholar 

  22. A. N. Dremin, Discoveries in the investigation of the detonation of molecular condensed explosives in the 20th century, Fiz. Goreniya Vzryva, 36, No. 6, 31–44 (2000).

    Google Scholar 

  23. A. Yu. Dolgoborodov, On the history of "discovering" the detonation phenomenon, in: Combustion and Explosion (Coll. of Sci. Papers), No. 6, 329–332 (2013).

  24. F. A. Abel, The rapidity of detonation, Nature, 8, 534 (1873).

    Google Scholar 

  25. E. Mallard and H. L. Le Chatelier, Recherches expérimentales et théorétiques sur la combustion des mélanges gazeux explosive, Annal. des mines, 8-é Ser., 4, 296-568 (1883).

  26. M. Berthelot and P. Vieille, L′onde explosive, Ann. Chim. Phys., 5th Folge, 28, 289−332 (1883).

  27. H. Dixon, The rate of explosion in gases, Phil. Trans. A, 184, 97–188 (1893).

    Article  Google Scholar 

  28. A. Schuster, Note to H. B. Dixon. Bakerian lecture: On the rate of explosion in gases, Phil. Trans. Roy. Soc. London A, 152, 97–188 (1893).

    Google Scholar 

  29. D. L. Chapman, On the rate of explosions in gases, Philos. Mag., 47, 90–104 (1899).

    Article  MATH  Google Scholar 

  30. E. J. C. Jouguet, On the propagation of chemical reaction in gases, J. Pure Appl. Math., 7, 347–425 (1905).

    MATH  Google Scholar 

  31. E. J. C. Jouguet and L. Crussard, Sur les ondes de choc et combustion. Stabilité de l′onde explosive, Comptes Rendus de 1’Academie des Sciences, Paris, 144, 560–563 (1907).

    MATH  Google Scholar 

  32. L. Crussard, Ondes de choc et onde explosive, Bull. Soc. Indust. Minér., 6 [IV], 257–364 (1907).

    MATH  Google Scholar 

  33. K. G. Falk, The ignition temperature of hydrogen–oxygen mixtures, J. Amer. Chem. Soc., 28, No. 11, 1517–1534 (1906).

    Article  Google Scholar 

  34. W. Nernst, Theoretische Chemie, 18th ed., Ferdinand Enke, Stuttgart (1921).

    MATH  Google Scholar 

  35. R. Becker, Physikalisches über feste und Gasförmige Sprengstoffe (La physique des explosifs solides et gazeux), Z. Tech. Phys., 152–159; 249–256 (1922).

  36. R. Wendland, Experimental investigations concerning the limits of detonation in gaseous mixtures, Z. Phys. Chem., 110, 637–663 (1924).

    Google Scholar 

  37. B. Lewis, A chain reaction theory of the rate of explosion in detonating gas mixtures, J. Amer. Chem. Soc., 52, 3120–3127 (1930).

    Article  Google Scholar 

  38. W. Jost, Explosions- und Verbrennungsvorgänge in Gasen, Springer-Verlag, Berlin–Heidelberg (1939).

    Book  Google Scholar 

  39. O. M. Todes, "Adiabatic" thermal explosion, Zh. Fiz. Khim., 4, Issue 1, 71–78 (1933).

    Google Scholar 

  40. K. Shtsholkin, An attempt to calculate the frequency of detonation spin, Phys. Z. Sowjetunion, 6, Heft 1, 175–181 (1934).

  41. J. H. van′t Hoff, Chemical Dynamics [Russian translation], ONTI, Leningrad (1936).

  42. M. A. Rivin and A. S. Sokolik, Self-ignition and combustion of gases, Zh. Fiz. Khim., 18, 767–773 (1936).

    Google Scholar 

  43. Ya. B. Zel’dovich, On the theory of detonation propagation in gaseous systems, Zh. Éksp. Tekh. Fiz., 10, Issue 5, 542–568 (1940).

    Google Scholar 

  44. J. Von Neumann, Theory of detonation waves, Office of Scientific Research and Development Rept., Division B, Section B-l, Serial No. 238 (1942).

  45. W. Döring, Über der Detonation Vergang in Gases, Ann. Phys., 43, No. 5, 421–436 (1943).

    Article  Google Scholar 

  46. Ya. B. Zel’dovich, Theory of Combustion and Detonation [in Russian], Izd. AN SSSR, Moscow (1944).

    Google Scholar 

  47. Ya. B. Zel’dovich, Theory of Shock Waves and Introduction to Gas Dynamics [in Russian], Izd. AN SSSR, Moscow–Leningrad (1946).

    Google Scholar 

  48. Ya. B. Zel’dovich and A. S. Kompaneets, Theory of Detonation [in Russian], 2nd revised and enlarged edn., Gostekhizdat, Moscow (1955).

  49. Ya. B. Zel’dovich, O. I. Leipunskii, and V. B. Librovich, Theory of Nonstationary Combustion of Powder [in Russian], Nauka, Moscow (1975).

    Google Scholar 

  50. Ya. B. Zel’dovich, G. I. Barenblatt, V. B. Librovich, and G. M. Makhviladze, Mathematical Theory of Combustion and Explosion [in Russian], Nauka, Moscow (1980).

    Google Scholar 

  51. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena [in Russian], 3rd revised edn., Fizmatlit, Moscow (2008).

  52. Yu. P. Raizer, Introduction to Hydrogasdynamics and to the Theory of Shock Waves for Physicists [in Russian], Izd. Dom "Intellekt", Dolgoprudnyi (2011).

    Google Scholar 

  53. R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves, Interscience Publishers, Inc., New York (1948).

    MATH  Google Scholar 

  54. N. N. Semenov, Chain Reactions [in Russian], Goskhimtekhizdat, Leningrad (1934); 2nd revised and enlarged edn., Nauka, Moscow (1986).

  55. A. S. Sokolik, Self-Ignition, Flame, and Detonation in Gases [in Russian], Izd. AN SSSR, Moscow (1960).

    MATH  Google Scholar 

  56. A. N. Dremin, S. D. Savrov, V. S. Trofimov, and N. N. Shvedov, Detonation Waves in Condensed Media [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  57. B. E. Gel’fand, M. V. Silnikov, S. P. Medvedev, and S. V. Khomik, Thermo-Gas Dynamics of Hydrogen Combustion and Explosion, Springer-Verlag, Berlin–Heidelberg (2012).

    Book  Google Scholar 

  58. L. I. Sedov, Similarity and Dimensionality Methods in Mechanics [in Russian], 8th edn., Nauka, Moscow (1977).

    Google Scholar 

  59. L. I. Sedov, Continuum Mechanics (in 2 vols.) [in Russian], 6th edn., Izd. Lan′, St. Petersburg (2004).

    Google Scholar 

  60. I. N. Zverev and N. N. Smirnov, Combustion Gas Dynamics [in Russian], Izd. MGU, Moscow (1987).

    MATH  Google Scholar 

  61. N. N. Smirnov and I. N. Zverev, Heterogeneous Combustion [in Russian], Izd. MGU, Moscow (1992).

    Google Scholar 

  62. G. G. Chernyi, Gas Flows with a High Supersonic Velocity [in Russian], Fizmatlit, Moscow (1959).

    Google Scholar 

  63. G. G. Chernyi, Gas Dynamics [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  64. V. P. Korobeinikov, N. S. Mel’nikova, and E. V. Ryazanov, Point Explosion Theory [in Russian], Fizmatgiz, Moscow (1961).

    Google Scholar 

  65. V. P. Korobeinikov, Problems of the Point Explosion Theory [in Russian], Nauka, Moscow (1985).

    Google Scholar 

  66. V. A. Levin, I. S. Manuilovich, and V. V. Markov, Excitation and quenching of detonation in gases, in: V. A. Levin, N. A. Fomin, and V. E. Fortov (Eds.), Physics of Shock Waves, Combustion, Explosion, Detonation, and Nonequilibrium Processes [in Russian], Izd. Otd. ITMO NAN Belarusi, Minsk (2014), pp. 173–206.

    Google Scholar 

  67. E. V. Stupochenko, S. A. Losev, and A. N. Osipov, Relaxation Processes in Shock Waves [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  68. L. N. Khitrin, Physics of Combustion and Explosion [in Russian], Izd. MGU, Moscow (1957).

    Google Scholar 

  69. L. D. Landau and E. M. Lifshits, Hydrodynamics. Theoretical Physics [in Russian], Vol. 4, 3rd revised edn., Nauka, Moscow (1986).

  70. D. A. Frank-Kamenetskii, Diffusion and Heat Transfer in Chemical Kinetics [in Russian], 1st edn., Izd. AN SSSR, Moscow (1947); 2nd edn., Nauka, Moscow (1967); 3rd edn., Nauka, Moscow (1987); 4th edn., Izd. "Intellekt," Moscow (2008).

  71. Ya. B. Zel’dovich, P. Ya. Sadovnikov, and D. A. Frank-Kamenetskii, Nitrogen Oxidation in Combustion [in Russian], Izd. AN SSSR, Moscow–Leningrad (1947).

    Google Scholar 

  72. Ya. B. Zel’dovich and D. A. Frank-Kamenetskii, Turbulent and Heterogeneous Combustion [in Russian], Izd. Moskovsk. Mekhanich. Inst., Moscow (1947).

    Google Scholar 

  73. K. I. Shchelkin, Fast Combustion and Spin Detonation of Gases [in Russian], Voen. Izd. Ministr. Obor.., Moscow (1949).

    Google Scholar 

  74. K. I. Shchelkin and Ya. K. Troshin, Gas Dynamics of Combustion [in Russian], Izd. AN SSSR, Moscow (1963).

    Google Scholar 

  75. K. I. Shchelkin, Instability of combustion and detonation in gases, Usp. Fiz. Nauk, 87, Issue 2, 273–302 (1965).

    Article  Google Scholar 

  76. K. I. Shchelkin, Combustion theory and gas detonation, in: "Mechanics in the USSR for 50 Years," in 4 vols., 2, 343–422 (1970).

  77. P. F. Pokhil, V. M. Mal’tsev, and V. M. Zaitsev, Methods of Investigation of Combustion and Detonation Processes [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  78. V. E. Fortov, L. V. Al’tshuler, R. F. Trunin, and A. I. Funtikov, Shock Waves and Extreme States of Matter [in Russian], Nauka, Moscow (2000).

    Google Scholar 

  79. F. A. Baum, K. P. Stanyukovich, and B. I. Shekhtel’, Explosion Physics [in Russian], Fizmatlit, Moscow (1959).

    Google Scholar 

  80. K. P. Stanyukovich, Nonstationary Continuum Motions [in Russian], 2nd revised and enlarged edn., Nauka, Moscow (1971).

  81. S. G. Andreev, A. V. Babkin, F. A. Baum, N. A. Imkhovik, I. F. Kobylkin, V. I. Kolpakov, S. V. Ladov, V. A. Odintsov, L. P. Orlenko, V. N. Okhitin, V. V. Selivanov, V. S. Solov’ev, K. P. Stanyukovich, V. P. Chelyshev, and B. I. Shekhter, Explosion Physics [in Russian], 3rd revised and enlarged edn., in 2 vols., Fizmatlit, Moscow (2002).

  82. Ya. B. Zel’dovich and V. V. Voevodsky, Thermal Explosion and Flame Propagation in Gases [in Russian], Moscow Mechanical Engineering Institute, Moscow (1947).

    Google Scholar 

  83. A. B. Nalbandyan and V. V. Voevodsky, Oxidation and Combustion Mechanism of Hydrogen [in Russian], Izd. AN SSSR, Moscow–Leningrad (1949).

    Google Scholar 

  84. V. V. Voevodsky, Physics and Physical Chemistry of Elementary Processes [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  85. A. K. Oppenheim, Dynamics of Combustion Systems, Springer, Berlin (2008).

    MATH  Google Scholar 

  86. A. K. Oppenheim, Combustion in Piston Engines: Technology, Evolution, Diagnosis and Control Springer, Berlin (2004).

    Book  Google Scholar 

  87. G. D. Salamandra, T. V. Bazhenova, S. G. Zaitsev, and R. I. Soloukhin, Some Methods of Studying Fast Processes [in Russian]. Izd. AN SSSR, Moscow (1960).

    Google Scholar 

  88. R. I. Soloukhin, Shock Waves and Detonation in Gases [in Russian], Fizmatlit, Moscow (1963).

    Google Scholar 

  89. Vasily M. Fomin, Anatoliy M. Kharitonov, Anatoly A. Maslov, Alexander N. Shiplyuk, Valentin V. Shumskii, Mikhail I. Yaroslavtsev, and Valery I. Zvegintsev, Hypersonic short-duration facilities for aerodynamic research at ITAM, Russia, in: O. Igra and F. Seiller (Eds.), Experimental Methods of Shock Wave Research, Springer-Verlag, Berlin–Heidelberg (2016), pp. 315–346.

  90. W. Merzkirch, Mach′s contribution to the development of gas dynamics, in: Ernst Mach — Physicist and Philosopher, Vol. VI of Boston Studies in the Philosophy of Science, D. Reidel Publ. Comp., Dordrecht, Holland (1970), pp. 42–59.

  91. W. Merzkirch, Why making use of flow visualization? J. Flow Visualiz. Image Process., 19, Issue 2, 161–177 (2012).

    Article  Google Scholar 

  92. M. Van Dyke, An Album of Fluid Motion [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  93. R. J. Emrich, Walker Bleakney and the development of shock tube at Princeton, Shock Waves, 5, 327–339 (1996).

    Article  MATH  Google Scholar 

  94. G. N. Abramovich, Applied Gas Dynamics [in Russian], in 2 parts, 5th edn., Nauka, Moscow (1991).

    Google Scholar 

  95. V. N. Croshko, N. A. Fomin, amd R. I. Soloukhin, Population inversion and gain distribution in supersonic mixed flow systems, Acta Astron., 2, Nos. 4–5, 929–939 (1975).

  96. N. Fomin, W. Merzkirch, D. Vitkin, and H. Wintrich, Visualization of turbulence anisotropy by single exposure speckle photography, Exp. Fluids, 20, 476–479 (1996).

    Article  Google Scholar 

  97. D. Vitkin, W. Merzkirch, and N. Fomin, Quantitative visualization of the change of turbulence structure caused by a normal shock wave, J. Visualiz., 1, No. 1, 29–35 (1998).

    Article  Google Scholar 

  98. N. Fomin, C. Fuentes, J.-B. Saulnier, and J.-L. Tuhault, Tissue blood flux monitoring by laser speckle photography, J. Laser Phys., 11, No. 3, 525–529 (2001).

    Google Scholar 

  99. N. Fomin, E. Lavinskaya, and D. Vitkin, Speckle tomography of turbulent flows with density fluctuations, Exp. Fluids, 33, 160–169 (2002).

    Article  Google Scholar 

  100. B. V. Voitsekhovsky, V. V. Mitrofanov, and M. E. Topchiyan, Front Structure of Detonation in Gases [in Russian]. Izd. SO AN SSSR, Novosibirsk (1963).

    Google Scholar 

  101. V. V. Mitrofanov, Detonation Theory [in Russian], Novosibirsk. Gos. Univ., Novosibirsk (1982).

    Google Scholar 

  102. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Experimental Profiles of Shock Waves in Condensed Materials [in Russian], Fizmatlit, Moscow (2008).

    Google Scholar 

  103. V. E. Fortov, Extreme States of Matter [in Russian], Fizmatlit, Moscow (2009).

    Google Scholar 

  104. V. E. Fortov, Extreme States of Matter on Earth and in the Cosmos, Springer-Verlag, Berlin–Heidelberg (2011).

    Book  MATH  Google Scholar 

  105. V. E. Fortov, Equations of the State of Matter. From an Ideal Gas to Quark-Gluon Plasma [in Russian], Fizmatlit, Moscow (2012).

    Google Scholar 

  106. V. E. Fortov, Physics of High Energy Densities [in Russian], Fizmatlit, Moscow (2013).

    Google Scholar 

  107. V. E. Fortov, Extreme States of Matter. High Energy Density Physics, Second Edition, Springer-Verlag, Berlin–Heidelberg (2016).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Fomin.

Additional information

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 90, No. 3, pp. 774–802, May–June, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fomin, N.A. Shock Waves in Inert and Reactive Media. J Eng Phys Thermophy 90, 736–762 (2017). https://doi.org/10.1007/s10891-017-1623-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-017-1623-9

Keywords

Navigation