Skip to main content
Log in

Mixed convective flow of a micropolar fluid mixture in a vertical channel with boundary conditions of the third kind

  • Published:
Journal of Engineering Physics and Thermophysics Aims and scope

The problem of fully developed mixed convection for a laminar flow of a micropolar fluid mixture in a vertical channel with a heat source/sink has been investigated. The plates exchange heat with an external fluid, and both conditions of equal and different reference temperatures of the external fluid are considered. The effect of the governing parameters, namely, heat source/sink, vortex viscosity, and buoyancy ratio on the velocity, microrotation velocity, and temperature has been discussed. An increase in the vortex viscosity parameter enhances microrotation and thus decreases the fluid velocity. The volume flow rate, total heat flux, and heat and species fluxes are shown to be lower than those for a Newtonian fluid in both the cases of heat absorption and generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16, 1–18 (1966).

    MathSciNet  Google Scholar 

  2. A. C. Eringen, Theory of thermomicropolar fluids, J. Math. Anal. Appl., 38, 480–496 (1972).

    Article  MATH  Google Scholar 

  3. V. K. Stokes, Theories of Fluids with Microstructure, An Introduction, Springer, New York (1984).

    Book  Google Scholar 

  4. G. Lukaszewicz, Micropolar Fluids, Theory and Applications, Birkhauser, Boston (1999).

    MATH  Google Scholar 

  5. J. C. Umavathi and M. S. Malashetty, Magnetohydrodynamic mixed convection in a vertical channel, Int. J. Non-Linear Mech., 40, 91–101 (2005).

    Article  MATH  Google Scholar 

  6. Cheng Ching-Yang, Fully developed natural convection heat and mass transfer of a micropolar fluid in a vertical channel with asymmetric wall temperatures and concentrations, Int. Commun. Heat Mass Transfer, 33, 627–635 (2006).

    Article  Google Scholar 

  7. J. Prathap Kumar, J. C. Umavathi, J. Chamkha Ali, and I. Pop , Fully developed free convective flow of micropolar and viscous fluids in a vertical channel, Appl. Math. Model., 34, 1175–1186 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Srinivas and R. Muthuraj, Effects of thermal radiation and space porosity on MHD mixed convection flow in a vertical channel using homotopy analysis method, Commun. Nonlin. Sci. Numer. Simul., 15, 2098–2108 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  9. T. C. Chiam, Micropolar fluid flow over a stretching sheet, Z. Angew. Math. Mech., 62, 565–568 (1982).

    Article  Google Scholar 

  10. M. W. Heruska, L. T. Watson, and K. K. Sankara, Micropolar flow past a porous stretching sheet, Comput. Fluids, 14, 117–129 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  11. R. S. Agarwal, R Bhargava, and A. V. S. Balaji, Finite element solution of flow and heat transfer of a micropolar fluid over a stretching sheet, Int. J. Eng. Sci., 27, 1421–1428 (1989).

    Article  MATH  Google Scholar 

  12. I. S. Hassanian and R. S. R. Gorla, Heat transfer to a micropolar fluid from a non-isothermal stretching sheet with suction and blowing, Acta Mech., 84, 191–199 (1990).

    Article  Google Scholar 

  13. N. A. Kelson and A. Desseaux, Effect of surface conditions on flow of a micropolar fluid driven by a porous stretching sheet, Int. J. Eng. Sci., 39, 1881–1897 (2001).

    Article  Google Scholar 

  14. N. A. Kelson and T. W. Farrell, Micropolar flow over a porous stretching sheet with strong suction or injection, Int. Commun. Heat Mass Transfer, 28, 479–488 (2001).

    Article  Google Scholar 

  15. R. Nazar, N. Amin, and I. Pop, Stagnation point flow of a micropolar fluid towards a stretching sheet, Int. J. Non-Linear Mech., 39, 1227–1235 (2004).

    Article  MATH  Google Scholar 

  16. T. Hayat, Z. Abbas, and T. Javed, Mixed convection flow of a micropolar fluid over a non-linearly stretching sheet, Phys. Lett. A, 372, 637–647 (2008).

    Article  MATH  Google Scholar 

  17. A. Ishak, R. Nazar, and I. Pop, Mixed convection stagnation point flow of a micropolar fluid towards a stretching sheet, Meccanica, 43, 411–418 (2008).

    Article  MATH  Google Scholar 

  18. A. Ishak, R. Nazarm, and I. Pop, Heat transfer over a stretching surface with variable surface heat flux in micropolar fluids, Phys. Lett. A, 372, 559–561 (2008).

    Article  MATH  Google Scholar 

  19. J. C. Umavathi and J. Prathap Kumar, Mixed convection flow of micropolar fluid in a vertical channel with asymmetric wall temperatures and wall heating conditions, Int. J. Appl. Mech. Eng., 16, 141–159 (2011).

    Google Scholar 

  20. E. Zanchini, Effect of viscous dissipation on mixed convection in a vertical channel with boundary conditions of third kind, Int. J. Heat Mass Transfer, 41, 3949–3959 (1998).

    Article  MATH  Google Scholar 

  21. J. Chamkha Ali, T. Grosan, and I. Pop, Fully developed free convection of a micropolar fluid in a vertical channel, Int. Commun. Heat Mass Transfer, 29, 1021–1196 (2002).

    Article  Google Scholar 

  22. H. S. Takhar, R. S. Agarwal, R. Bhargava, and S. Jain, Mixed convection flow of a micropolar fluid over a stretching sheet, Heat Mass Transfer, 34, 213–219 (1998).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Umavathi.

Additional information

Published in Inzhenerno-Fizicheskii Zhurnal, Vol. 85, No. 4, pp. 823–835, August–September, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Umavathi, J.C., Sultana, J. Mixed convective flow of a micropolar fluid mixture in a vertical channel with boundary conditions of the third kind. J Eng Phys Thermophy 85, 895–908 (2012). https://doi.org/10.1007/s10891-012-0728-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10891-012-0728-4

Keywords

Navigation