Skip to main content
Log in

From Leaf Metabolome to In Vivo Testing: Identifying Antifeedant Compounds for Ecological Studies of Marsupial Diets

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Identifying specific plant secondary metabolites that influence feeding behavior can be challenging, but a solid understanding of animal preferences can guide efforts. Common brushtail possums (Trichosurus vulpecula) predominantly eat Eucalyptus species belonging to the subgenus Symphyomyrtus, and avoid eating those belonging to the Monocalyptus subgenus (also called subgenus Eucalyptus). Using an unbiased 1H NMR metabolomics approach, a previous study identified unsubstituted B ring flavanones in most species of monocalypts examined, whereas these compounds were absent from symphyomyrtles. We hypothesised that unsubstituted B ring flavanones act as feeding deterrents for common brushtail possums. In the current study, we tested this hypothesis by comparing how much possums ate of a basal diet, with diets containing one of four structurally related compounds; pinocembrin, flavanone (unsubstituted B ring flavanones), chrysin (the flavone analogue of pinocembrin), and naringenin (a flavanone with B ring substitution). We found that pinocembrin and flavanone deterred feeding relative to the basal diet, but that chrysin and naringenin did not at equivalent concentrations. Thus, unsubstituted B-ring flavanones may explain why brushtail possums avoid eating monocalypt species. Furthermore, small differences in the structure of secondary compounds can have a large impact on antifeedant properties. These results demonstrate that metabolomics can be a valuable tool for ecologists seeking to understand herbivore feeding preferences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andrew RL (2005) Marker-based quantitative genetics in the wild?: The heritability and genetic correlation of chemical defenses in Eucalyptus. Genetics 171:1989–1998. doi:10.1534/genetics.105.042952

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Andrew RL, Peakall R, Wallis IR, Foley WJ (2007) Spatial distribution of defense chemicals and markers and the maintenance of chemical variation. Ecology 88:716–728

    Article  PubMed  Google Scholar 

  • Austin MP, Cunningham RB, Wood JT (1983) The subgeneric composition of eucalypt forest stands in a region of south-eastern Australia. Aust J Bot 31:63–71

    Article  Google Scholar 

  • Bick IRC, Brown RB, Hillis WE (1972) Three flavanones from leaves of Eucalyptus sieberi. Aust J Chem 25:449–451

    Article  CAS  Google Scholar 

  • Boyle R, McLean S, Foley WJ, Davies NW (1999) Comparative metabolism of dietary terpene, p-cymene, in generalist and specialist folivorous marsupials. J Chem Ecol 25:2109–2126. doi:10.1023/a:1021092908058

    Article  CAS  Google Scholar 

  • Bryant JP, Wieland GD, Reichardt PB, Lewis VE, McCarthy MC (1983) Pinosylvin methyl-ether deters snowshoe hare feeding on green alder. Science 222:1023–1025. doi:10.1126/science.222.4627.1023

    Article  CAS  PubMed  Google Scholar 

  • Clark L, Shah P (1994) Tests and refinements of a general structure-activity model for avian repellents. J Chem Ecol 20:321–339

    Article  CAS  PubMed  Google Scholar 

  • Conde E, Cadahia E, Garcia-Vallejo MC (1995) HPLC analysis of flavonoids and phenolic acids and aldehydes in Eucalyptus spp. Chromatographia 41:657–660

    Article  CAS  Google Scholar 

  • DeGabriel JL, Moore BD, Foley WJ, Johnson CN (2009) The effects of plant defensive chemistry on nutrient availability predict reproductive success in a mammal. Ecology 90:711–719

    Article  PubMed  Google Scholar 

  • Diaz Napal GN, Carpinella MC, Palacios SM (2009) Antifeedant activity of ethanolic extract from Flourensia oolepis and isolation of pinocembrin as its active principle compound. Bioresour Technol 100:3669–3673. doi:10.1016/j.biortech.2009.02.050

    Article  CAS  PubMed  Google Scholar 

  • Enge S, Nylund GM, Harder T, Pavia H (2012) An exotic chemical weapon explains low herbivore damage in an invasive alga. Ecology 93:2736–2745

    Article  PubMed  Google Scholar 

  • Hillis WE (1966) Polyphenols in the leaves of Eucalyptus L’Herit: a chemotaxonomic survey-I. Introduction and a study of the series Globulares. Phytochemistry 5:1075–1090

    Article  CAS  Google Scholar 

  • Hillis WE (1967) Polyphenols in the leaves of Eucalyptus: a chemotaxonomic survey-II. The sections Renantheroideae and Renantherae. Phytochemistry 6:259–274

    Article  CAS  Google Scholar 

  • Jensen LM, Wallis IR, Marsh KJ, Moore BD, Wiggins NL, Foley WJ (2014) Four species of arboreal folivore show differential tolerance to a secondary metabolite. Oecologia. doi:10.1007/s00442-014-2997-4

    PubMed  Google Scholar 

  • Kimble B, Li KM, Valtchev P, Higgins DP, Krockenberger MB, Govendir M (2014) In vitro hepatic microsomal metabolism of meloxicam in koalas (Phascolarctos cinereus), brushtail possums (Trichosurus vulpecula), ringtail possums (Pseudocheirus peregrinus), rats (Rattus norvegicus) and dogs (Canis lupus familiaris). Comp Biochem Physiol C 161:7–14. doi:10.1016/j.cbpc.2013.12.002

    CAS  Google Scholar 

  • Lang KL, Deagosto E, Zimmermann LA, Machado VR, Campos Bernardes LS, Schenkel EP, Javier Duran F, Palermo J, Rossini C (2013) Chemical modification produces species-specific changes in cucurbitacin antifeedant effect. J Agric Food Chem 61:5534–5539. doi:10.1021/jf4002457

    Article  CAS  PubMed  Google Scholar 

  • Lawler IR, Foley WJ, Pass GJ, Eschler BM (1998) Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J Comp Physiol B 168:611–618. doi:10.1007/s003600050183

    Article  CAS  PubMed  Google Scholar 

  • Lawler IR, Eschler BM, Schliebs DM, Foley WJ (1999) Relationship between chemical functional groups on Eucalyptus secondary metabolites and their effectiveness as marsupial antifeedants. J Chem Ecol 25:2561–2573

    Article  CAS  Google Scholar 

  • Li C-H, Liu Y, Hua J, Luo S-H, Li S-H (2014) Peltate glandular trichomes of Colquhounia seguinii harbor new defensive clerodane diterpenoids. J Integr Plant Biol 56:928–940. doi:10.1111/jipb.12242

    Article  CAS  PubMed  Google Scholar 

  • Marsh KJ, Foley WJ, Cowling A, Wallis IR (2003a) Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J Comp Physiol B 173:69–78

    CAS  PubMed  Google Scholar 

  • Marsh KJ, Wallis IR, Foley WJ (2003b) The effect of inactivating tannins on the intake of Eucalyptus foliage by a specialist Eucalyptus folivore (Pseudocheirus peregrinus) and a generalist herbivore (Trichosurus vulpecula). Aust J Zool 51:31–42

    Article  CAS  Google Scholar 

  • Marsh KJ, Moore BD, Wallis IR, Foley WJ (2014) Feeding rates of a mammalian browser confirm the predictions of a ‘foodscape’ model of its habitat. Oecologia 174:873–882. doi:10.1007/s00442-013-2808-3

    Article  PubMed  Google Scholar 

  • Moore BD, Wallis IR, Marsh KJ, Foley WJ (2004) The role of nutrition in the conservation of the marsupial folivores of eucalypt forests. In: Lunney D (ed) Conservation of Australia’s forest fauna, 2nd edn. Royal Zoological Society of New South Wales, Mossman, pp 549–575

    Chapter  Google Scholar 

  • Moore BD, Foley WJ, Wallis IR, Cowling A, Handasyde KA (2005) Eucalyptus foliar chemistry explains selective feeding by koalas. Biol Lett 1:64–67. doi:10.1098/rsbl.2004.0255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moore BD, Lawler IR, Wallis IR, Beale CM, Foley WJ (2010) Palatability mapping: a koala’s eye view of spatial variation in habitat quality. Ecology 91:3165–3176

    Article  PubMed  Google Scholar 

  • Morimoto M, Tanimoto K, Nakano S, Ozaki T, Nakano A, Komai K (2003) Insect antifeedant activity of lavones and chromones against Spodoptera litura. J Agric Food Chem 51:389–393

    Article  CAS  PubMed  Google Scholar 

  • Nolte D, Mason J, Clark L (1993) Nonlethal rodent repellents: differences in chemical structure and efficacy from nonlethal bird repellent. J Chem Ecol 19:2019–2027

    Article  CAS  PubMed  Google Scholar 

  • Pannala AS, Chan TS, O’Brien PJ, Rice-Evans CA (2001) Flavonoid B-ring chemistry and antioxidant activity: fast reaction kinetics. Biochem Biophys Res Commun 282:1161–1168. doi:10.1006/bbrc.2001.4705

    Article  Google Scholar 

  • Pass DM, Foley WJ, Bowden B (1998) Vertebrate herbivory on Eucalyptus - identification of specific feeding deterrents for common ringtail possums (Pseudocheirus peregrinus) by bioassay-guided fractionation of Eucalyptus ovata foliage. J Chem Ecol 24:1513–1527. doi:10.1023/a:1020911800847

    Article  CAS  Google Scholar 

  • Reichardt PB, Bryant JP, Mattes BR, Clausen TP, Chapin FS, Meyer M (1990) Winter chemical defnse of Alaskan balsam poplar against snowshoe hares. J Chem Ecol 16:1941–1959. doi:10.1007/bf01020507

    Article  CAS  PubMed  Google Scholar 

  • Saraf I, Choudhary A, Sharma RJ, Dandi K, Marsh KJ, Foley WJ, Singh IP (2015) Extraction of pinocembrin from leaves of different species of Eucalyptus and its quantitative analysis by qNMR and HPTLC. Nat Prod Commun 10:379–382

    Google Scholar 

  • Simmen B, Tarnaud L, Marez A, Hladik A (2014) Leaf chemistry as a predictor of primate biomass and the mediating role of food selection: a case study in a folivorous lemur (Propithecus verreauxi). Am J Primatol 76:563–575. doi:10.1002/ajp.22249

    Article  CAS  PubMed  Google Scholar 

  • Taylor RB, Lindquist N, Kubanek J, Hay ME (2003) Intraspecific variation in palatability and defensive chemistry of brown seaweeds: effects on herbivore fitness. Oecologia 136:412–423. doi:10.1007/s00442-003-1280-x

    Article  PubMed  Google Scholar 

  • Tucker DJ, Wallis IR, Bolton JM, Marsh KJ, Rosser AA, Brereton IM, Nicolle D, Foley WJ (2010) A metabolomic approach to identifying chemical mediators of mammal–plant interactions. J Chem Ecol 36:727–735. doi:10.1007/s10886-010-9803-5

    Article  CAS  PubMed  Google Scholar 

  • Villalba JJ, Burritt EA, St Clair SB (2014) Aspen (Populus tremuloides Michx.) intake and preference by mammalian herbivores: the role of plant secondary compounds and nutritional context. J Chem Ecol 40:1135–1145. doi:10.1007/s10886-014-0507-0

    Article  CAS  PubMed  Google Scholar 

  • Vourc’h G, Russell J, Martin JL (2002) Linking deer browsing and terpene production among genetic identities in Chamaecyparis nootkatensis and Thuja plicata (Cupressaceae). J Hered 93:370–376. doi:10.1093/jhered/93.5.370

    Article  Google Scholar 

  • Watkins RW, Lumley JA, Gill EL, Bishop JD, Langton SD, MacNicoll AD, Price NR, Drew MGB (1999) Quantitative structure-activity relationships (QSAR) of cinnamic acid bird repellents. J Chem Ecol 25:2825–2845. doi:10.1023/a:1020863927061

    Article  CAS  Google Scholar 

  • Wollenweber E, Kohorst G (1981) Epicuticular leaf flavonoids from Eucalyptus species and from Kalmia latifolia. Z Naturforsch C 36:913–915

    Google Scholar 

Download references

Acknowledgments

We thank Hannah Windley for help with the capture and care of possums, and Dr Teresa Neeman from the ANU Statistical Consulting Unit for statistical advice. This work was supported by grants from the Australian Research Council to KJM (DE120101263) and WJF (DP0986142). Animal work was approved by the Australian National University Animal Experimentation Ethics Committee (A2012/29) and conforms with the Australian Code of Practice for the Care and Use of Animals for Scientific Purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen J. Marsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marsh, K.J., Yin, B., Singh, I.P. et al. From Leaf Metabolome to In Vivo Testing: Identifying Antifeedant Compounds for Ecological Studies of Marsupial Diets. J Chem Ecol 41, 513–519 (2015). https://doi.org/10.1007/s10886-015-0589-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-015-0589-3

Keywords

Navigation