Skip to main content

Advertisement

Log in

A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Microbes in the rhizosphere have a suite of extracellular compounds, both primary and secondary, that communicate with other organisms in their immediate environment. Here, we describe a two-way volatile interaction between two widespread and economically important soil-borne pathogens of peanut, Aspergillus flavus and Ralstonia solanacearum, a fungus and bacterium, respectively. In response to A. flavus volatiles, R. solanacearum reduced production of the major virulence factor extracellular polysaccharide (EPS). In parallel, A. flavus responded to R. solanacearum volatiles by reducing conidia production, both on plates and on peanut seeds and by increasing aflatoxin production on peanut. Volatile profiling of these organisms using solid-phase micro-extraction gas chromatography mass spectroscopy (SPME-GCMS) provided a first glimpse at the compounds that may drive these interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Affeldt KJ, Brodhagen M, Keller NP (2012) Aspergillus oxylipin signaling and quorum sensing pathways depend on G protein-coupled receptors. Toxins (Basel) 4:695–717

    Article  CAS  Google Scholar 

  • Amaike S, Keller NP (2011) Aspergillus flavus. Annu Rev Phytopathol 49:107–133

    Article  CAS  PubMed  Google Scholar 

  • Badri DV, Weir TL, Van der Lelie D, Vivanco JM (2009) Rhizosphere chemical dialogues: plant-microbe interactions. Curr Opin Biotechnol 20:642–650

    Article  CAS  PubMed  Google Scholar 

  • Berendsen RL, Pieterse CMJ, Bakker PHM (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    Article  CAS  PubMed  Google Scholar 

  • Bitas V, Kim HS, Bennett JW, Kang S (2013) Sniffing on microbes: diverse roles of microbial volatile organic compounds in plant health. Mol Plant Microbe Interact 26:835–843

    Article  CAS  PubMed  Google Scholar 

  • Boucher C, Van Gijsegem F, Barberis P, Arlat M, Zischek C (1987) Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J Bacteriol 169:5626–5632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brodhagen M, Keller NP (2006) Signalling pathways connecting mycotoxin production and sporulation. Mol Plant Pathol 7:285–301

    Article  CAS  PubMed  Google Scholar 

  • Brodhagen M, Tsitsigiannis DI, Hornung E, Goebel C, Feussner I, Keller NP (2008) Reciprocal oxylipin-mediated cross-talk in the Aspergillus-seed pathosystem. Mol Microbiol 67:378–391

    Article  CAS  PubMed  Google Scholar 

  • Brown SH, Scott JB, Bhaheetharan J, Sharpee WC, Milde L, Wilson R, Keller NP (2009) Oxygenase coordination is required for morphological transition and the host-fungus interaction of Aspergillus flavus. Mol Plant Microbe Interact 22:882–894

    Article  CAS  PubMed  Google Scholar 

  • Bruins M, Rahim Z, Bos A, Van de Sande WWJ, Endtz HP, Van Belkum A (2013) Diagnosis of active tuberculosis by e-nose analysis of exhaled air. Tuberculosis (Edinb) 93:232–238, Elsevier Ltd

    Article  Google Scholar 

  • Brumbley SM, Carney BF, Denny TP (1993) Phenotype conversion in pseudomonas solanacearum due to spontaneous inactivation of PhcA, a putative LysR transcriptional regulator. J Bacteriol 175:5477–5487

    CAS  PubMed Central  PubMed  Google Scholar 

  • Campagnoli A, Cheli F, Savoini G, Crotti A, Pastori GM, Dell’Orto V (2009) Application of an electronic nose to detection of aflatoxins in corn. Vet Res Commun 33(1):273–275

    Article  PubMed  Google Scholar 

  • Chakrabarti A, Singh R (2011) The emerging epidemiology of mould infections in developing countries. Curr Opin Infect Dis 24:521–526

    Article  PubMed  Google Scholar 

  • Chambers ST, Scott-Thomas A, Epton M (2012) Developments in novel breath tests for bacterial and fungal pulmonary infection. Curr Opin Pulm Med 18:228–232

    Article  PubMed  Google Scholar 

  • Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Flavier B, Schell M, Denny TP (1997) Differential expression of virulence genes and motility in ralstonia (Pseudomonas) solanacearum during exponential growth. Appl Environ Microbiol 63:844–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cugini C, Calfee MW, Farrow JM, Morales DK, Pesci EC, Hogan D (2007) Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Mol Microbiol 65:896–906

    Article  CAS  PubMed  Google Scholar 

  • De Lucca J, Carter-Wientjes CH, Boué S, Bhatnagar D (2011) Volatile trans-2-hexenal, a soybean aldehyde, inhibits Aspergillus flavus growth and aflatoxin production in corn. J Food Sci 76:M381–M386

    Article  PubMed  Google Scholar 

  • De Lucca AJ, Boue SM, Carter-Wientjes C, Bhatnagar D (2012) Volatile profiles and aflatoxin production by toxigenic and non-toxigenic isolates of Aspergillus flavus grown on sterile and non-sterile cracked corn. Ann Agric Environ Med 19:91–98

    PubMed  Google Scholar 

  • Denny TP (2006) Plant pathogenic ralstonia species. In: Gnanamanickam SS (ed) Plant-associated bacteria. Springer Publishing, Dordrecht, pp 573–644

    Chapter  Google Scholar 

  • Duran RM, Cary JW, Calvo AM (2009) The role of veA in Aspergillus flavus infection of peanut. Corn and Cotton Open Mycol J 3:27–36

    Article  CAS  Google Scholar 

  • Effmert U, Kalderás J, Warnke R, Piechulla B (2012) Volatile mediated interactions between bacteria and fungi in the soil. J Chem Ecol 38:665–703

    Article  CAS  PubMed  Google Scholar 

  • Fernando WGD, Ramarathnam R, Krishnamoorthy AS, Savchuk SC (2005) Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol Biochem 37:955–964

    Article  CAS  Google Scholar 

  • Flavier AB, Clough SJ, Schell MA, Denny TP (1997) Identification of 3-hydroxypalmitic acid methyl ester as a novel autoregulator controlling virulence in ralstonia solanacearum. Mol Microbiol 26:251–259

    Article  CAS  PubMed  Google Scholar 

  • Forseth RR, Amaike S, Schwenk D, Affeldt KJ, Hoffmeister D, Schroeder FC, Keller NP (2013) Homologous NRPS-like gene clusters mediate redundant small-molecule biosynthesis in Aspergillus flavus. Angew Chem Int Ed Engl 52:1590–1594

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gandomi H, Misaghi A, Basti AA, Bokaei S, Khosravi A, Abbasifar A, Javan AJ (2009) Effect of zataria multiflora boiss. essential oil on growth and aflatoxin formation by Aspergillus flavus in culture media and cheese. Food Chem Toxicol 47:2397–2400

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Brodhagen M, Isakeit T, Brown SH, Göbel C, Betran J, Feussner I, Keller NP, Kolomiets MV (2009) Inactivation of the lipoxygenase ZmLOX3 increases susceptibility of maize to Aspergillus spp. Mol Plant Microbe Interact 22:222–231

    Article  PubMed  Google Scholar 

  • Genin S, Denny TP (2012) Pathogenomics of the ralstonia solanacearum species complex. Annu Rev Phytopathol 50:67–89

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Hanahan D (1985) DNA cloning. In: Glover DM (ed) A practical approach. IRL Press, McLean, p 109

    Google Scholar 

  • Hayward A (1991) Biology and epidemiology of bacterial wilt caused by pseudomonas solanacearum. Annu Rev Phytopathol 29:65–87

    Article  CAS  PubMed  Google Scholar 

  • He Z-M, Price MS, Obrian GR, Georgianna DR, Payne GA (2007) Improved protocols for functional analysis in the pathogenic fungus Aspergillus flavus. BMC Microbiol 7:104–114

    Article  PubMed Central  PubMed  Google Scholar 

  • Hendrick CA, Sequeira L (1984) Lipopolysaccharide-defective mutants of the wilt pathogen Pseudomonas solanacearum. Appl Environ Microbiol 48:94–101

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hernández-Romero D, Solano F, Herna D, Sanchez-Amat A (2005) Polyphenol oxidase activity expression in ralstonia solanacearum. Appl Environ Microbiol 71:6808–6815

    Article  PubMed Central  PubMed  Google Scholar 

  • Hogan D, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences candida albicans morphology. Mol Microbiol 54:1212–1223

    Article  CAS  PubMed  Google Scholar 

  • Horowitz Brown S, Zarnowski R, Sharpee WC, Keller NP (2008) Morphological transitions governed by density dependence and lipoxygenase activity in Aspergillus flavus. Appl Environ Microbiol 74:5674–5685

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Huang J, Carney BF, Denny TP, Weissinger AK, Schell MA (1995) A complex network regulates expression of eps and other virulence genes of pseudomonas solanacearum. J Bacteriol 177:1259–1267

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329

    Article  CAS  PubMed  Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from pseudomonas aeruginosa — antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbio 57:708–713

    Article  CAS  Google Scholar 

  • Klich MA (2007) Aspergillus flavus : the major producer of aflatoxin. Mol Plant Pathol 8:713–722

    Article  CAS  PubMed  Google Scholar 

  • Le CN, Kruijt M, Raaijmakers JM (2012) Involvement of phenazines and lipopeptides in interactions between pseudomonas species and sclerotium rolfsii, causal agent of stem rot disease on groundnut. J Appl Microbiol 112:390–403

    Article  CAS  PubMed  Google Scholar 

  • Mackie AE, Wheatley RE (1999) Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol Biochem 31:375–385

    Article  CAS  Google Scholar 

  • McCluskey K, Wiest A, Plamann M (2010) The fungal genetics stock center: a repository for 50 years of fungal genetics research. J Biosci 35:119–126

    Article  CAS  PubMed  Google Scholar 

  • Middleton, K. J., and Hayward, A. C. (1990) Bacterial wilt of groundnuts. collaborative res. plan. meet., Genting Highlands, Malaysia, 18–19 March. Proc. ACIAR/ICRISAT 31:1–58

  • Nawrath T, Mgode GF, Weetjens B, Kaufmann SHE, Schulz S (2012) The volatiles of pathogenic and nonpathogenic mycobacteria and related bacteria. Beilstein J Org Chem 8:290–299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, Denning DW (2005) Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature 438:1151–1156

    Article  CAS  PubMed  Google Scholar 

  • Nosanchuk JD, Casadevall A (2003) Microreview: the contribution of melanin to microbial pathogenesis. Cell Microbiol 5:203–223

    Article  CAS  PubMed  Google Scholar 

  • Partida-Martínez LP, Heil M (2011) The microbe-free plant: fact or artifact? Front Plant Sci 2:1–16

    Article  Google Scholar 

  • Peckham GD (2011) Mouse MAb 3. H7 recognizes ralstonia solanacearum race 3 biovar 2 strains. Hybridoma 30:571–573

    Article  Google Scholar 

  • Pel HJ, De Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Article  PubMed  Google Scholar 

  • Philippot L, Raaijmakers JM, Lemanceau P, Van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    Article  CAS  PubMed  Google Scholar 

  • Rahme LG, Stevens EJ, Wolfort SF, Shao J, Tompkins RG, Ausubel FM (1995) Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902

    Article  CAS  PubMed  Google Scholar 

  • Roze LV, Beaudry RM, Arthur AE, Calvo AM, Linz JE (2007) Aspergillus volatiles regulate aflatoxin synthesis and asexual sporulation in Aspergillus parasiticus. Appl Environ Microbiol 73:7268–7276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roze LV, Chanda A, Laivenieks M, Beaudry RM, Artymovich K a, Koptina AV, Awad DW, Valeeva D, Jones AD, Linz JE (2010) Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism. BMC Biochem 11:33–47

    Article  PubMed Central  PubMed  Google Scholar 

  • Roze LV, Koptina AV, Laivenieks M, Beaudry RM, Jones DA, Kanarsky AV, Linz JE (2011) Willow volatiles influence growth, development, and secondary metabolism in Aspergillus parasiticus. Appl Microbiol Biotechnol 92:359–370

    Article  CAS  PubMed  Google Scholar 

  • Saile E, Mcgarvey JA, Schell MA, Denny TP (1997) Role of extracellular polysaccharide and endoglucanase in root invasion and colonization of tomato plants by ralstonia solanacearum. Phytopathology 87:1264–1271

    Article  CAS  PubMed  Google Scholar 

  • Schell, M. A. (2000) Control of virulence and pathogenicity genes of Ralstonia solanacearum by an elaborate sensory network. Annu. Rev. Phytopathol.:263–292.

  • Schneider P, Jacobs JM, Neres J, Aldrich CC, Allen C, Nett M, Hoffmeister D (2009) The global virulence regulators VsrAD and PhcA control secondary metabolism in the plant pathogen Ralstonia solanacearum. ChemBioChem 10:2730–2732

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Keller NP (2001) Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 157:591–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Song J, Fan L, Beaudry RM (1998) Application of solid phase microextraction and gas chromatography/time-of-flight mass spectrometry for rapid analysis of flavor volatiles in tomato and strawberry fruits. J Agric Food Chem 46:3721–3726

    Article  CAS  Google Scholar 

  • Theis KR, Venkataraman A, Dycus JA, Koonter KD, Schmitt-Matzen EN, Wagner AP, Holekamp KE, Schmidt TM (2013) Symbiotic bacteria appear to mediate hyena social odors. Proc Natl Acad Sci U S A 110:19832–19837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tognon G, Campagnoli a, Pinotti L, Dell’Orto V, Cheli F (2005) Implementation of the electronic nose for the identification of mycotoxins in durum wheat (Triticum durum). Vet Res Commun 29(2):391–393

    Article  PubMed  Google Scholar 

  • Van Elsas JD, Kastelein P, De Vries PM, Van Overbeek LS (2001) Effects of ecological factors on the survival and physiology of Ralstonia solanacearum bv. 2 in irrigation water. Can J Microbiol 47:842–854

    Article  PubMed  Google Scholar 

  • Van Overbeek LS, Bergervoet JHW, Jacobs FHH, Van Elsas JD (2004) The low-temperature-induced viable-but-nonculturable state affects the virulence of Ralstonia solanacearum Biovar 2. Phytopathology 94:463–469

    Article  PubMed  Google Scholar 

  • Wang C, Wang Z, Qiao X, Li Z, Li F, Chen M, Wang Y, Huang Y, Cui H (2013a) Antifungal activity of volatile organic compounds from Streptomyces alboflavus TD-1. FEMS Microbiol Lett 341:45–51

    Article  CAS  PubMed  Google Scholar 

  • Wang K, PS Y, QL D, QX W, ZB W, Peng J (2013b) Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol 29:1–10

    Article  PubMed  Google Scholar 

  • Wenke K, Kai M, Piechulla B (2010) Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506

    Article  CAS  PubMed  Google Scholar 

  • Wheatley RE (2002) The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Meng Q, Yu Z (2011) Effects of methanogenic inhibitors on methane production and abundances of methanogens and cellulolytic bacteria in in vitro ruminal cultures. Appl Environ Microbiol 77:2634–2639

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under grant no. EFRI-1136903 to N.P.K. and an NSF Graduate Research Fellowship under grant no. DGE-1256259 to J.E.S. We thank Dr. Gabriel Peckham at Black Ivory Biotech for the 3. H7 cell lines, and James Starr of Texas A&M University for peanuts used in these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nancy P. Keller.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Fig S1

R. solanacearum volatiles have variable affects on fungal conidiation a) Photos of representative conidiation of different Aspergilli in axenic culture b) Photos of representative conidiation of different Aspergilli in co-culture c) Key to layout of photo for panels a and b. (DOCX 11234 kb)

Fig S2

A. flavus produces less conidia in response to various bacteria a) Photos of representative differential conidiation of A. flavus in response to co-culture with various bacteria b) Key to layout of photo for panel a. c) Mean + SEM of conidial counts in response to co-culture with different bacteria. Asterisks indicate statistical significance according to one-way ANOVA followed by Tukey’s post-hoc test (p<0.0001, N=4). (DOCX 8381 kb)

Table S1

Total compiled data from SPME-GCMS experiments. Detectable quantities for each run shown, as well as their difference and average value. (DOCX 47 kb)

Table S2

Co-culture VOC analysis. Mass area data collected from two independent biological samples were averaged. Microbe specific fold changes for each volatile were calculated based on comparisons of averages with that of the co-culture reading. (DOCX 52 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spraker, J.E., Jewell, K., Roze, L.V. et al. A Volatile Relationship: Profiling an Inter-Kingdom Dialogue Between two Plant Pathogens, Ralstonia Solanacearum and Aspergillus Flavus. J Chem Ecol 40, 502–513 (2014). https://doi.org/10.1007/s10886-014-0432-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0432-2

Keywords

Navigation