Skip to main content
Log in

Genetic Distance and Age Affect the Cuticular Chemical Profiles of the Clonal Ant Cerapachys biroi

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Although cuticular hydrocarbons (CHCs) have received much attention from biologists because of their important role in insect communication, few studies have addressed the chemical ecology of clonal species of eusocial insects. In this study we investigated whether and how differences in CHCs relate to the genetics and reproductive dynamics of the parthenogenetic ant Cerapachys biroi. We collected individuals of different ages and subcastes from several colonies belonging to four clonal lineages, and analyzed their cuticular chemical signature. CHCs varied according to colonies and clonal lineages in two independent data sets, and correlations were found between genetic and chemical distances between colonies. This supports the results of previous research showing that C. biroi workers discriminate between nestmates and non-nestmates, especially when they belong to different clonal lineages. In C. biroi, the production of individuals of a morphological subcaste specialized in reproduction is inversely proportional to colony-level fertility. As chemical signatures usually correlate with fertility and reproductive activity in social Hymenoptera, we asked whether CHCs could function as fertility-signaling primer pheromones determining larval subcaste fate in C. biroi. Interestingly, and contrary to findings for several other ant species, fertility and reproductive activity showed no correlation with chemical signatures, suggesting the absence of fertility related CHCs. This implies that other cues are responsible for subcaste differentiation in this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Blight O, Berville L, Vogel V, Hefetz A, Renucci M, Orgeas J, Provost E, Keller L (2012) Variation in the level of aggression, chemical and genetic distance among three supercolonies of the Argentine ant in Europe. Mol Ecol 21:4106–21

    Article  CAS  PubMed  Google Scholar 

  • Breed MD, Perry S, Bjostad LB (2004) Testing the blank slate hypothesis: why honey bee colonies accept young bees. Ins Soc 51:12–16

    Article  Google Scholar 

  • Brian MV (1973) Caste control through worker attack in the ant Myrmica. Ins Soc 20:87–102

    Article  Google Scholar 

  • Denis D, Blatrix R, Fresneau D (2006) How an ant manages to display individual and colonial signals by using the same channel. J Chem Ecol 32:1647–61

    Article  CAS  PubMed  Google Scholar 

  • Drescher J, Blüthgen N, Schmitt T, Bühler J, Feldhaar H (2010) Societies drifting apart? Behavioural, genetic and chemical differentiation between supercolonies in the yellow crazy ant Anoplolepis gracilipes. PLoS One 5:e13581

    Article  PubMed Central  PubMed  Google Scholar 

  • Clarke KR, Gorley RN (2006) PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Cuvillier-Hot V, Lenoir A, Peeters C (2004) Reproductive monopoly enforced by sterile police workers in a queenless ant. Behav Ecol 15:970–975

    Article  Google Scholar 

  • Emlen DJ (1994) Environmental control of horn length dimorphism in the beetle Onthophagus acuminatus (Coleoptera: Scarabaeidae). Proc R Soc Lond B 256:131–136

    Article  Google Scholar 

  • Gibbs AG, Crockett EL (1998) The biology of lipids: integrative and comparative perspectives. American Zoologist 38:265–267

    CAS  Google Scholar 

  • Gibbs AG (2002) Lipid melting and cuticular permeability: new insights into an old problem. J Ins Physiol 48:391–400

    Article  CAS  Google Scholar 

  • Giraud T, Pedersen JS, Keller L (2002) Evolution of supercolonies: the Argentine ants of southern Europe. Proc Natl Acad Sci U S A 99:6075–9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hartmann A, D'Ettorre P, Jones GR, Heinze J (2005) Fertility signaling-the proximate mechanism of worker policing in a clonal ant. Naturwissenschaften 92:282–286

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Wantia J, Torres JA, Heinze J (2003) Worker policing without genetic conflicts in a clonal ant. Proc Natl Acad Sci USA 100:12836–12840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinze J, Stengl B, Sledge MF (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav Ecol Sociobiol 52:59–65

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The Ants. Harvard University Press, Cambridge

    Book  Google Scholar 

  • Holman L, Jørgensen CG, Nielsen J, D'Ettorre P (2010) Identification of an ant queen pheromone regulating worker sterility. Proc R Soc Lond B 277:3793–800

    Article  CAS  Google Scholar 

  • Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371–393

    Article  CAS  PubMed  Google Scholar 

  • Hunt J, Simmons LW (1997) Patterns of fluctuating asymmetry in beetle horns: an experimental examination of the honest signalling hypothesis. Behav Ecol Sociobiol 41:109–114

    Article  Google Scholar 

  • Ichinose K, Lenoir A (2009) Ontogeny of hydrocarbon profiles in the ant Aphaenogaster senilis and effects of social isolation. CR Biologies 332:697–703

    Article  CAS  Google Scholar 

  • Kronauer DJC, Pierce NE, Keller L (2012) Asexual reproduction in introduced and native populations of the ant Cerapachys biroi. Mol Ecol 21:5221–5235

    Article  PubMed  Google Scholar 

  • Kronauer DJC, Tsuji K, Pierce NE, Keller L (2013) Non-nest mate discrimination and clonal colony structure in the parthenogenetic ant Cerapachys biroi. Behav Ecol 24:617–622

    Article  Google Scholar 

  • Le Conte Y, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523–542

    Article  PubMed  Google Scholar 

  • Lecoutey E, Chaline N, Jaisson P (2011) Clonal ant societies exhibit fertility-dependent shifts in caste ratios. Behav Ecol 22:108–113

    Article  Google Scholar 

  • Liebig J, Peeters C, Oldham NJ, Markstadter C, Hölldobler B (2000) Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc Natl Acad Sci USA 97:4124–4131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Research 27:209–220

    CAS  PubMed  Google Scholar 

  • Martin SJ, Weihao Z, Drijfhout FP (2009) Long-term stability of species-specific cuticular hydrocarbon profiles in hornets. Biol J Linnean Soc 96:732–737

    Article  Google Scholar 

  • Meirmans PG, Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Moczek AP, Emlen D (2000) Male horn dimorphisms in the scarab beetle, Onthophagus taurus: do alternative reproductive tactics favour alternative phenotypes. Anim Behav 59:459–466

    Article  PubMed  Google Scholar 

  • Monnin T, Malosse C, Peeters C (1998) Solid Phase MicroExtraction and cuticular hydrocarbon differences related to reproductive activity in the queenless ant Dinoponera quadriceps. J Chem Ecol 24:473–490

    Article  CAS  Google Scholar 

  • Monnin T, Peeters C (1999) Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav Ecology 10:323–332

    Article  Google Scholar 

  • Monnin T (2006) Chemical recognition of reproductive status in social insects. Ann Zool Fenn 43:515–530

    Google Scholar 

  • Oxley P, Ji L, Fetter-Pruneda I, McKenzie S, Li C, Hu H, Zhang J, Kronauer DJC (2014) The Genome of the Clonal Raider Ant Cerapachys biroi. Curr Biol 24:1–8

    Article  Google Scholar 

  • Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327

    Article  CAS  Google Scholar 

  • Pennick CA, Liebig J (2012) Regulation of queen development through worker aggression in a predatory ant. Behav Ecol 23:992–998

    Article  Google Scholar 

  • Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Ravary F, Jaisson P (2004) Absence of individual sterility in thelytokous colonies of the ant Cerapachys biroi Forel (Formicidae, Cerapachyinae). Ins Soc 51:67–73

    Article  Google Scholar 

  • Ravary F, Jahyny B, Jaisson P (2006) Brood stimulation controls the phasic reproductive cycle of the parthenogenetic ant Cerapachys biroi. Ins Soc 53:20–26

    Article  Google Scholar 

  • Ravary F, Jaisson P (2002) The reproductive cycle of thelytokous colonies of Cerapachys biroi Forel (Formicidae, Cerapachyinae). Ins Soc 49:114–119

    Article  Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L.). J Chem Ecol 31:2731–45

    Article  CAS  PubMed  Google Scholar 

  • Smith AA, Hölldobler B, Liebig J (2008) Hydrocarbon signals explain the pattern of worker and egg policing in the ant Aphaenogaster cockerelli. J Chem Ecol 34:1275–1282

    Article  CAS  PubMed  Google Scholar 

  • Teseo S, Kronauer DJC, Jaisson P, Châline N (2013) Enforcement of reproductive synchrony via policing in a clonal ant. Curr Biol 23:328–332

    Article  CAS  PubMed  Google Scholar 

  • Teseo S, Châline N, Jaisson P, Kronauer DJC (2014) Epistasis between adults and larvae underlies caste fate and fitness in a clonal ant. Nat Commun 5:3363

    Article  PubMed  Google Scholar 

  • Tsuji K, Yamauchi K (1995) Production of females by parthenogenesis in the ant Cerapachys biroi. Ins Soc 42:333–336

    Article  Google Scholar 

  • Tsutsui ND, Suarez AV (2003) The colony structure and population biology of invasive ants. Conserv Biol 17:48–58

    Article  Google Scholar 

  • Wetterer JK, Kronauer DJC, Borowiec ML (2012) Worldwide spread of Cerapachys biroi (Hymenoptera: Formicidae: Cerapachyinae). Myrmecological News 17:1–4

    Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Amer Nat 128:13–34

    Article  Google Scholar 

  • Wheeler DE (1991) The developmental basis of worker caste polymorphism in ants. Amer Nat 138:1218–1238

    Article  Google Scholar 

Download references

Acknowledgments

We thank Paul Devienne and Marjorie Labédan for technical support with ant colonies at LEEC, and Chloé Leroy for technical assistance with gas chromatography–mass spectrometry. This work was supported by a Ph.D. research grant from the French Ministry of Research to S.T., as well as a Junior Fellowship from the Harvard Society of Fellows and a Milton Fund Award to D.J.C.K. All coauthors have agreed on the contents of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serafino Teseo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teseo, S., Lecoutey, E., Kronauer, D.J.C. et al. Genetic Distance and Age Affect the Cuticular Chemical Profiles of the Clonal Ant Cerapachys biroi . J Chem Ecol 40, 429–438 (2014). https://doi.org/10.1007/s10886-014-0428-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-014-0428-y

Keywords

Navigation