Skip to main content
Log in

Volatile Mediated Interactions Between Bacteria and Fungi in the Soil

  • Review Article
  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Soil is one of the major habitats of bacteria and fungi. In this arena their interactions are part of a communication network that keeps microhabitats in balance. Prominent mediator molecules of these inter- and intraorganismic relationships are inorganic and organic microbial volatile compounds (mVOCs). In this review the state of the art regarding the wealth of mVOC emission is presented. To date, ca. 300 bacteria and fungi were described as VOC producers and approximately 800 mVOCs were compiled in DOVE-MO (database of volatiles emitted by microorganisms). Furthermore, this paper summarizes morphological and phenotypical alterations and reactions that occur in the organisms due to the presence of mVOCs. These effects might provide clues for elucidating the biological and ecological significance of mVOC emissions and will help to unravel the entirety of belowground‚ volatile-wired’ interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Acea, M. J., Moore, C. R., and Alexander, M. 1988. Survival and growth of bacteria introduced into soil. Soil Biol. Biochem. 20:509–515.

    Article  Google Scholar 

  • Afsharmanesh, H., Ahmadzadeh, M., and Sharifi-Tehrani, A. 2006. Biocontrol of Rhizoctonia solani, the causal agent of bean damping-off by fluorescent pseudomonads. Commun. Agric. Appl. Biol. Sci. 71:1021–1029.

    PubMed  CAS  Google Scholar 

  • Alekseeva, T. V. 2007. Soil microstructures and factors of its formation. Eurasian Soil Sci. 40:649–659.

    Article  Google Scholar 

  • Alharbi, S. A., Al-Harbi, N. A., Hajomer, S., Wainwright, M., and Aljohny, B. O. 2011. Study on the effect of bacterial and chemical volatiles on the growth of the fungus Aureobasidium pullulans. Afr. J. Microbiol. Res. 5:5245–5249.

    CAS  Google Scholar 

  • Anderson, A. J. 1992. The influence of the plant root on mycorrhizal formation, pp. 37–64, in M. J. Allen (ed.), Mycorrhizal Functioning. Chapman & Hall, New York, NY.

    Google Scholar 

  • Aochi, Y. O. and Farmer, W. J. 2005. Impact of soil microstructure on the molecular transport dynamics of 1,2-dichlorethane. Geoderma 127:137–153.

    Article  CAS  Google Scholar 

  • Asensio, D., Penuelas, J., Filella, I., and Llusia, J. 2007. On-line screening of soil VOCs exchange responses to moisture, temperature and root presence. Plant Soil 291:249–261.

    Article  CAS  Google Scholar 

  • Asensio, D., Owen, S. M., Llusia, J., and Penuelas, J. 2008. The distribution of volatile isoprenoids in the soil horizons around Pinus halepensis trees. Soil Biol. Biochem. 40:2937–2947.

    Article  CAS  Google Scholar 

  • Aspray, T. J., Eirian Jones, E., Whipps, J. M., and Bending, G. D. 2006. Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestrisLactarius rufus symbiosis. FEMS Microbiol. Ecol. 56:25–33.

    Article  PubMed  CAS  Google Scholar 

  • Atmosukarto, I., Castillo, U., Hess, W. M., Sears, J., and Strobel, G. 2005. Isolation and characterization of Muscodor albus I-41.3 s, a volatile antibiotic producing fungus. Plant Sci. 169:854–861.

    Article  CAS  Google Scholar 

  • Babaeipoor, E., Mirzaei, S., Danesh, Y. R., Arjmandian, A., and Chaichi, M. 2011. Evaluation of some antagonistic bacteria in biological control of Gaeumannomyces graminis var tritici causal agent of wheat take-all disease in Iran. Afr. J. Microbiol. Res. 5:5165–5173.

    CAS  Google Scholar 

  • Baldwin, I. T., Halitschke, R., Paschold, A., Von Dahl, C. C., and Preston, C. A. 2006. Volatile signaling in plant plant interactions: ‘Talking-Trees’ in the genomics era. Science 311:812–815.

    Article  PubMed  CAS  Google Scholar 

  • Barbieri, E., Gioacchini, A. M., Zambonelli, A., Bertini, L., and Stocchi, V. 2005. Determination of microbial volatile organic compounds from Staphylococcus pasteuri against Tuber borchii using solid-phase microextraction and gas chromatography/ion trap mass spectrometry. Rapid Commun. Mass Sp. 19:3411–3415.

    Article  CAS  Google Scholar 

  • Beck, H. C., Hansen, A. M., and Lauritsen, F. R. 2002. Metabolite production and kinetics of branched-chain aldehyde oxidation in Staphylococcus xylosus. Enzyme Microb. Tech. 31:94–101.

    Article  CAS  Google Scholar 

  • Bending, G. D., Aspray, T. J., and Whipps, J. M. 2006. Significance of microbial interactions in the mycorrhizosphere. Adv. Appl. Microbiol. 60:97–132.

    Article  PubMed  CAS  Google Scholar 

  • Bernier, S. P., Letoffe, S., Delepierre, M., and Ghigo, J. M. 2011. Biogenic ammonia modifies antibiotic resistance at a distance in physically separated bacteria. Mol. Microbiol. 81:705–716.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, P. N. and Jha, D. K. 2011. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World J. Microb. Biot.. doi:10.1007/s11274-011-0979-9.

  • Bianciotto, V., Minerdi, D., Perotto, S., and Bonfante, P. 1996. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123–131.

    Article  Google Scholar 

  • Bjurman, J., Nordstr and, E., and Kristensson, J. 1997. Growth-phase-related production of potential volatile-organic tracer compounds by moulds on wood. Indoor Air 7:2–7.

    Article  CAS  Google Scholar 

  • Blom, D., Fabbri, C., Connor, E. C., Schiestl, F. P., Klauser, D. R., Bolle, R. T., Eberl, L., and Weisskopf, L. 2011a. Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ. Microbiol. 13:3047–3058.

    Article  PubMed  CAS  Google Scholar 

  • Blom, D., Fabbri, C., Eberl, L., and Weisskopf, L. 2011b. Volatile-mediated killing of Arabidopsis thaliana by bacteria is mainly mediated due to hydrogen cyanide. Appl. Environ. Microbiol. 77:1000–1008.

    Article  PubMed  CAS  Google Scholar 

  • Blumer, C. and Haas, D. 2000. Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 173:170–177.

    Article  PubMed  CAS  Google Scholar 

  • Bonfante, P. and Anca, I. A. 2009. Plants, mycorrhizal fungi, and bacteria: a network of interactions. Annu. Rev. Microbiol. 63:363–383.

    Article  PubMed  CAS  Google Scholar 

  • Börjesson, T., Stöllman, U., and Schnürer, J. 1990. Volatile metabolites and other indicators of Penicillium aurantiogriseum growth on different substrates. Appl. Environ. Microbiol. 56:3705–3710.

    PubMed  Google Scholar 

  • Börjesson, T., Stöllman, U., and Schnürer, J. 1992. Volatile metabolites produced by six fungal species compared with other indicators of fungal growth on cereal grains. Appl. Environ. Microbiol. 58:2599–2605.

    PubMed  Google Scholar 

  • Brimecombe, M. J., De Leij, F. A. A. M., and Lynch, J. M. 2007. Rhizodeposition and microbial populations, pp. 73–110, in R. Pinton, Z. Varanini, and P. Nannipieri (eds.), The Rhizosphere: Biochemistry and Organic Substances at the Soil-plant Interface. Taylor & Francis, Boca Raton, Florida.

    Google Scholar 

  • Brondz, I. and Olsen, I. 1991. Multivariate analyses of cellular fatty acids in Bacteroides, Prevotella, Porphyromonas, Wolinella, and Campylobacter spp. J. Clin. Microbiol. 29:183–189.

    PubMed  CAS  Google Scholar 

  • Brown, M. E. 1973. Soil bacteriostasis limitation in growth of soil and rhizosphere bacteria. Can. J. Microbiol. 19:195–199.

    Article  PubMed  CAS  Google Scholar 

  • Brown, R. B. 2003. Soil texture, pp. 1-7, in Fact Sheet SL-29. Soil and Water Science Department, Florida Cooperative Extension Service, Institute of Food and Agriculture Sciences, University of Florida.

  • Bruce, A., Wheatley, R. E., Humphris, S. N., Hackett, C. A., and Florence, M. E. J. 2000. Production of volatile organic compounds by Trichoderma in media containing different amino acids and their effect on selected wood decay fungi. Holzforschung 54:481–486.

    Article  CAS  Google Scholar 

  • Bruce, A., Verrall, S., Hackett, C., and Wheatley, R. E. 2004. Identification of volatile organic compounds (VOCs) from bacteria and yeast causing growth inhibition of sapstain fungi. Holzforschung 58:193–198.

    Article  CAS  Google Scholar 

  • Bunge, M., Araghipour, N., Mikoviny, T., Dunkl, J., Schnitzhofer, R., Hansel, A., Schinner, F., Wisthaler, A., Margesin, R., and Mark, T. D. 2008. On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl. Environ. Microbiol. 74:2179–2186.

    Article  PubMed  CAS  Google Scholar 

  • Calvet, C., Barea, J. M., and Pera, J. 1992. In vitro interactions between the vesicular-arbuscular mycorrhizal fungus Glomus mosseae and some saprophytic fungi isolated from organic substrates. Soil Biol. Biochem. 24:775–780.

    Article  Google Scholar 

  • Cao, Y., Zhang, Z., Ling, N., Yuan, Y., Zheng, X., Shen, B., and Shen, Q. 2011. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol. Fertil. Soils 47:495–506.

    Article  CAS  Google Scholar 

  • Cehnu, C. and Stotzky, G. 2002. Interaction between microorganisms and soil particles: An overview, pp. 3–28, in P. M. Huang, J. M. Bollag, and N. Senesi (eds.), Interactions between soil particles and microorganisms. John Wiley & Sons, Hoboken, New York.

    Google Scholar 

  • Chakraborty, U., Chakraborty, B. N., Allay, S., De, U., and Chakraborty, A. P. 2011. Dual application of Bacillus pumilus and Glomus mosseae for improvement of health status of mandarin plants. Acta Hortic. 892:215–230.

    Google Scholar 

  • Champagne, P. P. and Ramsay, J. A. 2010. Dye decolorization and detoxification by laccase immobilized on porous glass beads. Bioresour. Technol. 101:2230–2235.

    Article  PubMed  CAS  Google Scholar 

  • Chaurasia, B., Pandey, A., Palni, L. M. S., Trivedi, P., Kumar, B., and Colvin, N. 2005. Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol. Res. 160:75–81.

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Ro, D. K., Petri, J., Gershenzon, J., Bohlmann, J., Pichersky, E., and Tholl, D. 2004. Characterization of a root-specific Arabidopsis terpene synthase responsible for the formation of the volatile monoterpene 1,8-cineole. Plant Physiol. 135:1956–1966.

    Article  PubMed  CAS  Google Scholar 

  • Chernin, L., Toklikishvili, N., Ovadis, M., Kim, S., Ben-ari, J., Khmel, I., and Vainstein, A. 2011. Quorum-sensing quenching by rhizobacterial volatiles. Environ. Microbiol. Rep. 3:698–704.

    Article  CAS  Google Scholar 

  • Chiron, N. and Michelot, D. 2005. Mushrooms odors, chemistry and role in the biotic interactions – a review. Cryptogr. Mycol. 26:299–365.

    Google Scholar 

  • Chuankun, X., Minghe, M., Leming, Z., and Keqin, Z. 2004. Soil volatile fungistasis and volatile fungistatic compounds. Soil Biol. Biochem. 36:1997–2004.

    Article  CAS  Google Scholar 

  • Citron, C. A., Gleitzmann, J., Laurenzano, G., Pukall, R., and Dickschat, J. S. 2012. Terpenoids are widespread in actinomycetes: a correlation of secondary metabolism and genome data. Chem. Bio. Chem. 13:202–214.

    Google Scholar 

  • Compant, S., Clément, C., and Sessitsch, A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42:669–678.

    Article  CAS  Google Scholar 

  • Conklin, A. R. 2005. Introduction to soil chemistry. John Wiley & Sons, Hoboken, New York.

    Book  Google Scholar 

  • Crowe, J. D. and Olsson, S. 2001. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67:2088–2094.

    Article  PubMed  CAS  Google Scholar 

  • Daniel, R. 2011. Soil-based metagenomics, pp. 83-92, in F. J. de Bruijn (ed.). Handbook of Molecular Microbial Mycology II: Metagenomics in Different Habitats. John Wiley & Sons, Inc.

  • Davis, R. D. 1976. Soil bacteriostasis: relation to bacterial nutrition and active soil inhibition. Soil Biol. Biochem. 8:429–433.

    Google Scholar 

  • Dequiedt, S., Saby, N. P. A., Lelievre, M., Jolivet, C., Thioulouse, J., Toutain, B., Arrouays, D., Bispo, A., Lemanceau, P., and Ranjard, L. 2011. Biogeographical patterns of soil molecular microbial biomass as influenced by soil characteristics and management. Global Ecol. Biogeogr. 20:641–652.

    Article  Google Scholar 

  • Dickschat, J. S. 2009. Quorum sensing and bacterial biofilms. Nat. Prod. Rep. 27:343–369.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Bode, H. B., Mahmud, T., Müller, R., and Schulz, S. 2005a. A novel type of geosmin biosynthesis in myxobacteria. J. Org. Chem. 70:5174–5182.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Bode, H. B., Wenzel, S. C., Müller, R., and Schulz, S. 2005b. Biosynthesis and identification of volatiles released by the myxobacterium Stigmatella aurantiaca. Chem. Biol. Chem. 6:2023–2033.

    CAS  Google Scholar 

  • Dickschat, J. S., Helmke, E., and Schulz, S. 2005c. Volatile organic compounds from arctic bacteria of the cytophaga-flavobacterium-bacteroides-group: A retrobiosynthetic approach in chemotaxonomic investigations. Chem. Biodivers. 2:318–353.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Martens, T., Brinkhoff, T., Simon, M., and Schulz, S. 2005d. Volatiles released by a Streptomyces species isolated from the North Sea. Chem. Biodivers. 2:837–865.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Nawrath, T., Thiel, V., Kunze, B., Müller, R., and Schulz, S. 2007. Biosynthese des Duftstoffes 2-Methylisoborneol durch das Myxobakterium Nannocystis exedens. Angew. Chem. - Ger. Edit. 119:8436–8439.

  • Dickschat, J. S., Reichenbach, H., Wagner-Dobler, I., and Schulz, S. 2005e. Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur. J. Org. Chem. 19:4141–4153.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Wagner-Dobler, I., and Schulz, S. 2005f. The chafer pheromone buibuilactone and ant pyrazines are also produced by marine bacteria. J. Chem. Ecol. 31:925–947.

    Article  CAS  Google Scholar 

  • Dickschat, J. S., Wenzel, S. C., Bode, H. B., Müller, R., and Schulz, S. 2004. Biosynthesis of volatiles by the myxobacterium Myxococcus xanthus. Chem. Biol. Chem. 5:778–787.

    Google Scholar 

  • Dighton, J. 2003. Fungi in ecosystem processes. Marcel Dekker, New York, NY.

    Book  Google Scholar 

  • Dobbs, C. G. and Hinson, W. H. 1953. A widespread fungistasis in soils. Nature 172:197–199.

    Article  PubMed  CAS  Google Scholar 

  • Dobson, H. E. M. 2006. Relationship between floral fragrance composition and type of pollinator, pp. 147–198, in E. Pichersky and N. Dudareva (eds.), Biology of floral scents. Taylor & Francis Group, Boca Raton.

    Chapter  Google Scholar 

  • Duponnois, R., Ba, A. M., and Mateille, T. 1998. Effect of some rhizosphere bacteria for the biocontrol of nematodes of the genus Meloidogyne with Arthrobotrys oligospora. Fundam. Appl. Nematol. 21:157–163.

    Google Scholar 

  • Ercolini, D., Russo, F., Nasi, A., Ferranti, P., and Villani, F. 2009. Mesophilic and psychrotrophic bacteria from meat and their spoilage potential in vitro and in beef. Appl. Environ. Microbiol. 75:1990–2001.

    Article  PubMed  CAS  Google Scholar 

  • Ezeonu, I. M., Price, D. L., Simmons, R. B., Crow, S. A., and Ahearn, D. G. 1994. Fungal production of volatiles during growth on fiberglass. Appl. Environ. Microbiol. 60:4172–4173.

    PubMed  CAS  Google Scholar 

  • Farag, M. A., Ryu, C. M., Summer, L. W., and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67:2262–2268.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E. 2001. Surface-to-air signals. Nature 411:854–856.

    Article  PubMed  CAS  Google Scholar 

  • Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S., and Savchuk, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955–964.

    Article  CAS  Google Scholar 

  • Fiddaman, P. J. and Rossall, S. 1993. The production of antifungal volatiles by Bacillus subtilis. J. Appl. Bacteriol. 74:119–126.

    Article  PubMed  CAS  Google Scholar 

  • Fiddaman, P. J. and Rossall, S. 1994. Effect of substrate on the production of antifungal volatiles from Bacillus subtilis. J. Appl. Bacteriol. 76:395–405.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, G., Schwalbe, R., Möller, M., and Ostrowski, R. 1999. Species-spezific production on microbial volatile organic compounds (MVOC) by airborne fungi from a compost facility. Chemosphere 39:795–810.

    Article  PubMed  CAS  Google Scholar 

  • Forster, R. C. 1988. Microenvironments of soil microorganisms. Biol. Fertil. Soils 6:189–203.

    Google Scholar 

  • Freeman, L. R., Silverman, G. J., Angelini, P., Merritt Jr., C., and Esselen, W. B. 1976. Volatiles produced by microorganisms isolated from refrigerated chicken at spoilage. Appl. Environ. Microbiol. 32:222–231.

    PubMed  CAS  Google Scholar 

  • Frey-Klett, P., Garbaye, J., and Tarkka, M. 2007. The mycorrhiza helper bacteria revisited. New Phytol. 176:22–36.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs, G. 2007. Allgemeine Hikrobiologie, 8th edn. http://www.kluweronline.com/issn/0098-0331.

  • Gans, J., Wolinsky, M., and Dunbar J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science. 26;309(5739):1387–1390.

    Google Scholar 

  • Garbaye, J. and Duponnois, R. 1992. Specificity and function of mycorrhization helper bacteria (MHB) associated with the Pseudotsuga menziesiiLaccaria laccata symbiosis. Symbiosis 14:335–344.

    Google Scholar 

  • Garbeva, P., Hol, W. H. G., Termorshuizen, A. J., Kowalchuk, G. A., and De Boer, W. 2011. Fungistasis and general soil biostasis - A new synthesis. Soil Biol. Biochem. 43:469–477.

    Article  CAS  Google Scholar 

  • Gasch, A. P. 2007. Comparative genomics of the environmental stress response in ascomycete fungi. Yeast 24:961–976.

    Article  PubMed  CAS  Google Scholar 

  • Gerber, N. N. and Lechevalier, H. A. 1965. Geosmin, an earthy-smelling substance isolated from actinomycetes. Appl. Microbiol. 13:935–938.

    PubMed  CAS  Google Scholar 

  • Gottschalk, G. 1986. Bacterial metabolism. Springer Verlag, Heidelberg.

    Book  Google Scholar 

  • Gregory, P. J. 2006. Roots, rhizosphere and soil: the route to a better understanding of soil science? Eur. J. Soil Sci. 57:2–12.

    Article  Google Scholar 

  • Griffin, G. J., Hora, T. S., and Baker, R. 1975. Soil fungistasis: elevation of the exogenous carbon and nitrogen requirements for spore germination by fungistatic volatiles in soil. Can. J. Microbiol. 21:1468–1475.

    Article  PubMed  CAS  Google Scholar 

  • Gu, Y. Q., Mo, M. H., Zhou, J. P., Zou, C. S., and Zhang, K. Q. 2007. Evaluation and identification of potential organic nematicidal volatiles from soil bacteria. Soil Biol. Biochem. 39:2567–2575.

    Article  CAS  Google Scholar 

  • Haas, D. and Défago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3:307–319.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, A., and Schikora, A. 2012. Quorum sensing of bacteria and trans-kingdom interactions of N-acyl homoserine lactones with eukaryotes. J. Chem. Ecol., this issue.

  • Hawksworth, D. L. and Mueller, G. M. 2005. Fungal communities: their diversity and distribution, pp. 27–37, in J. Dighton, J. F. White, and P. Oudemans (eds.), The fungal community. Taylor & Francis, Boca Raton, Florida.

    Chapter  Google Scholar 

  • Heil, M. and Ton, J. 2008. Long-distance signalling in plant defence. Trends Plant Sci. 13:264–272.

    Article  PubMed  CAS  Google Scholar 

  • Heil, M. and Walters, D. R. 2009. Ecological consequences of plant defence signalling. Adv. Bot. Res. 51:667–716.

    Article  CAS  Google Scholar 

  • Herrington, P. R., Craig, J. T., and Sheridan, J. E. 1987. Methyl vinyl ketone: a volatile fungistatic inhibitor from Streptomyces griseoruber. Soil Biol. Biochem. 19:509–512.

    Article  CAS  Google Scholar 

  • Heuer, H. and Smalla, K. 2012. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol. Rev. doi:10.1111/j.1574-6976.2012.00337.x

  • Hibbing, M. E., Fuqua, C., Parsek, M. R., and Peterson, S. B. 2010. Bacterial competition: surviving and thriving in the microbial jungle. Nat. Rev. Microbiol. 8:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Hinton, A. and Hume, M. E. 1995. Antibacterial activity of the metabolic by-products of a Veillonella species and Bacteroides fragilis. Anaerobe 1:121–127.

    Article  PubMed  CAS  Google Scholar 

  • Ho, W. C. and Ko, W. H. 1982. Characteristics of soil microbiostasis. Soil Biol. Biochem. 14:589–593.

    Article  Google Scholar 

  • Höckelmann, C. and Jüttner, F. 2004. Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci. Technol. 49:47–54.

    PubMed  Google Scholar 

  • Höckelmann, C., Moens, T., and Friedrich, J. 2004. Odor compounds from cyanobacterial biofilms acting as attractants and repellents for free-living nematodes. Limnol. Oceanogr. 49:1809–1819.

    Article  Google Scholar 

  • Hora, T. S. and Baker, R. 1972. Soil fungistasis: microflora producing a volatile inhibitor. Trans. Br. Mycol. Soc. 59:491–500.

    Article  Google Scholar 

  • Horii, S. and Ishii, T. 2006. Identification and function of Gigaspora margarita growth-promoting microorganisms. Symbiosis 41:135–141.

    CAS  Google Scholar 

  • Howell, C. R., Beier, R. C., and Stipanovic, R. D. 1988. Production of ammonia by Enterobacter cloacae and its possible role in the biological control of Pythium preemergence damping-off by the bacterium. Ecol. Epidemiol. 78:1075–1078.

    CAS  Google Scholar 

  • Huang, C-J., Tsay, J-F., Chang, S-Y., Yang, H-P., Wu, W-S., and Chen, C-Y. 2012. Dimethyl disulfide is an induced systemic resistance-elicitor produced by Bacillus cereus C1L. Soc. Chem. Ind.; doi:10.1002/ps.3301

  • Hussain, A. and Hasnain, S. 2011. Interactions of bacterial cytokinins and IAA in the rhizosphere may alter phytostimulatory efficiency of rhizobacteria. World J. Microbiol. Biotechnol. 27:2645–2654.

    Article  CAS  Google Scholar 

  • Insam, H. and Seewald, M. S. A. 2010. Volatile organic compounds (VOCs) in soils. Biol. Fertil. Soils 46:199–213.

    Article  CAS  Google Scholar 

  • Jacobson, E. S. 2000. Pathogenic roles for fungal melanins. Clin. Microbiol. Rev. 13:708–717.

    Article  PubMed  CAS  Google Scholar 

  • Jamalizadeh, M., Etebarian, H. R., Aminian, H., and Alizadeh, A. 2010. Biological control of Botrytis mali on apple fruit by use of Bacillus bacteria, isolated from the rhizosphere of wheat. Arch. Phytopathol. Pl. 43:1836–1845.

    Article  Google Scholar 

  • Jelen, H. H. 2003. Use of solid phase microextraction (SPME) for profiling fungal volatile metabolites. Lett. Appl. Microbiol. 36:263–267.

    Article  PubMed  CAS  Google Scholar 

  • Jelen, H. H., Mirocha, C. J., Wasowicz, E., and Kaminski, E. 1995. Production of volatile sesquiterpenes by Fusarium sambucinum strains with different abilities to synthesize trichothecenes. Appl. Environ. Microbiol. 61:3815–3820.

    PubMed  CAS  Google Scholar 

  • Jung, S. C., Martinez-Medina, A., Lopez-Raez, J. A., and Pozo, M. J. 2012. Mycorrhiza-induced resistance and priming of plant defenses. J. Chem. Ecol., this issue.

  • Kai, M., Effmert, U., Berg, G., and Piechulla, B. 2007. Volatiles of bacterial antagonists inhibit mycelial growth of the plant pathogen Rhizoctonia solani. Arch. Microbiol. 187:351–360.

    Article  PubMed  CAS  Google Scholar 

  • Kai, M., Vespermann, A., and Piechulla, B. 2008. The growth of fungi and Arabidopsis thaliana is influenced by bacterial volatiles. Plant Signal. Behav. 3:1–3.

    Article  Google Scholar 

  • Kai, M., Haustein, M., Molina, F., Petri, A., Scholz, B., and Piechulla, B. 2009. Bacterial volatiles and their action potential. Appl. Microbiol. Biotechnol. 81:1001–1013.

    Article  PubMed  CAS  Google Scholar 

  • Kai, M., Crespo, E., Cristescu, S. M., Harren, F. J. M., and Piechulla, B. 2010. Serratia odorifera: analysis of volatile emission and biological impact of volatile compounds on Arabidopsis thaliana. Appl. Microbiol. Biotechnol. 88:965–976.

    Article  PubMed  CAS  Google Scholar 

  • Kalderas, J. 2011. Erfassung, Analyse und Datenbank – Integration flüchtiger Metabolite von Pilzen und anderen Mikroorganismen. Diploma Thesis, University of Rostock

  • Kaminski, E., Stawicki, S., and Wasowicz, E. 1974. Volatile flavor compounds produced by molds of Aspergillus, Penicillum and fungi imperfecti. Appl. Microbiol. 27:1001–1004.

    PubMed  CAS  Google Scholar 

  • Kesselmeier, J. and Staudt, M. 1999. Biogenic volatile organic compounds VOC - an overview on emission, physiology and ecology. J. Atmos. Chem. 33:23–88.

    Article  CAS  Google Scholar 

  • Ko, W. H. and Chow, F. K. 1977. Characteristics of bacteriostasis in natural soils. J. Gen. Microbiol. 102:295–298.

    Google Scholar 

  • Koske, R. E. and Gemma, J. N. 1992. Fungal reactions to plants prior to mycorrhizal formation, pp. 3–36, in M. J. Allen (ed.), Mycorrhizal functioning. Chapman & Hall, New York, NY.

    Google Scholar 

  • Kurita-Ochiai, T., Fukushima, K., and Ochiai, K. 1995. Volatile fatty acids, metabolic by-products of periodontopathic bacteria, inhibit lymphocyte proliferation and cytokine production. J. Dent. Res. 74:1367–1373.

    Article  PubMed  CAS  Google Scholar 

  • Labows, J. N., Mcginley, K. J., Webster, G. F., and Leyden, J. J. 1980. Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry. J. Clin. Microbiol. 2:521–526.

    Google Scholar 

  • Lee, M. L., Smith, D. L., and Freeman, L. R. 1979. High resolution gas chromatographic profiles of volatile organic compounds produced by microorganisms at refrigerated temperatures. Appl. Environ. Microbiol. 37:85–90.

    PubMed  CAS  Google Scholar 

  • Leff, J. W. and Fierer, N. 2008. Volatile organic compound (VOC) emissions from soil and litter samples. Soil Biol. Biochem. 40:1629–1636.

    Article  CAS  Google Scholar 

  • Lenc, L., Kwaśna, H., and Sadowski, C. 2011. Dynamics of the root/soil pathogens and antagonists in organic and integrated production of potato. Eur. J. Plant Pathol. 131:603–620.

    Article  Google Scholar 

  • Lin, H. C. and Phelan, P. L. 1992. Comparisons of volatiles from beetle-transmitted Ceratocystis fagacearum and four non-insect-dependent fungi. J. Chem. Ecol. 18:1623–1632.

    Article  CAS  Google Scholar 

  • Linton, C. W. and Wright, S. J. L. 1993. Volatile organic compounds: microbial aspects and some technical implications. J. Appl. Bacteriol. 75:1–12.

    Article  CAS  Google Scholar 

  • Logeshwarn, P., Thangaraju, M., and Rajasundari, K. 2011. Antagonistic potential of Gluconacetobacter diazotrophicus against Fusarium oxysporum in sweet potato (Ipomea batatus). Arch. Phytopathol. Pl. 44:216–223.

    Article  CAS  Google Scholar 

  • Lütke-Eversloh, T. and Bahl, H. 2011. Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr. Opin. Biotechn. 22:634–647.

    Article  CAS  Google Scholar 

  • Mackie, A. E. and Wheatley, R. E. 1999. Effects and incidence of volatile organic compound interactions between soil bacterial and fungal isolates. Soil Biol. Biochem. 31:375–385.

    Article  CAS  Google Scholar 

  • March, R. E., Richard, D. S., and Ryan, R. W. 2006. Volatile compounds from six species of truffle – head-space analysis and vapor analysis at high mass resolution. Int. J. Mass Spectrom. 249–250:60–67.

    Google Scholar 

  • Martinez, A., Obertello, M., Pardo, A., Ocampo, J., and Godeas, A. 2004. Interactions between Trichoderma pseudokoningii strains and the arbuscular mycorrhizal fungi Glomus mosseae and Gigaspora rosea. Mycorrhiza 14:79–84.

    Article  PubMed  Google Scholar 

  • Mattheis, J. P. and Roberts, R. G. 1992. Identification of geosmin as a volatile metabolite of Penicillium expansum. Appl. Environ. Microbiol. 58:3170–3172.

    PubMed  CAS  Google Scholar 

  • Matysika, S., Herbarth, O., and Mueller, A. 2008. Determination of volatile metabolites originating from mould growth on wall paper and synthetic media. J. Microbiol. Methods 75:182–187.

    Article  CAS  Google Scholar 

  • McAllister, C. B., Garcia-Garrido, J. M., Garcia-Romera, I., Godeas, A., and Ocampo, J. A. 1996. In vitro interactions between Alternaria alternata, Fusarium equiseti and Glomus mosseae. Symbiosis 20:163–174.

    Google Scholar 

  • McCain, A. H. 1966. A volatile antibiotic by Streptomyces griseus. Phytopathology 56:150.

    Google Scholar 

  • McNeal, K. S. and Herbert, B. E. 2009. Volatile organic metabolites as indicators of soil microbial activity and community composition shifts. Soil Sci. Soc. Am. J. 73:579–588.

    Article  CAS  Google Scholar 

  • Menetrez, M. Y. and Foarde, K. K. 2002. Microbial volatile organic compound emission rates and exposure model. Indoor Built Environ. 11:208–213.

    CAS  Google Scholar 

  • Michalke, K., Wickenheiser, E. B., Mehring, M., Hirner, A. V., and Hensel, R. 2000. Production of volatile derivatives of metal (loid)s by microflora involved in anaerobic digestion of sewage sludge. Appl. Environ. Microbiol. 66:2791–2796.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A., Scanlan, R. A., Lee, J. S., and Libbey, L. M. 1973. Identification of the volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas fragi. Appl. Microbiol. 25:952–955.

    PubMed  CAS  Google Scholar 

  • Minerdi, D., Moretti, M., Gilardi, G., Barberio, C., Gullino, M. L., and Garibaldi, A. 2008. Bacterial ectosymbionts and virulence silencing in a Fusarium oxysporum strain. Environ. Microbiol. 10:1725–1741.

    Article  PubMed  CAS  Google Scholar 

  • Minerdi, D., Bossi, S., Gullino, M. L., and Garibaldi, A. 2009. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA35. Environ. Microbiol. 11:844–854.

    Article  PubMed  CAS  Google Scholar 

  • Minnich, M. and Schumacher, B. 1993. Behavior and determination of volatile organic compounds in soil: A literature review. US Environmental Protection Agency. EPA 600/R-93/140:1–104.

  • Miransari, M. 2011. Interactions between arbuscular mycorrhizal fungi and soil bacteria. Appl. Microbiol. Biotech. 89:917–930.

    Article  CAS  Google Scholar 

  • Morra, M. J. and Dick, W. A. 1991. Mechanisms of H2S production from cysteine and cystine by microorganisms isolated from soil by selective enrichment. Appl. Environ. Microbiol. 57:1413–1417.

    PubMed  CAS  Google Scholar 

  • Naeem, S. 1997. Species redundancy and ecosystem reliability. Conserv. Biol. 12:39–45.

    Google Scholar 

  • Nakas, J. P. and Klein, D. A. 1980. Mineralization capacity of bacteria and fungi from the rhizosphere-rhizoplane of a semiarid grassland. Appl. Environ. Microbiol. 39:113–117.

    PubMed  CAS  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., and Renella, G. 2003. Microbial diversity and soil functions. Eur. J. Soil Sci. 54:655–670.

    Article  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., Renella, G., and Valori, F. 2007. Microbial diversity and microbial activity in the rhizosphere. Ciencia del suelo (ARGENTINA) 25:89–97.

    Google Scholar 

  • Nawrath, T., Dickschat, J. S., Müller, R., Jiang, J., Cane, D. E., and Schulz, S. 2008. Identification of (8S, 9S, 10S)-8, 10-dimethyl-1-octalin, a key intermediate in the biosynthesis of geosmin in bacteria. J. Am. Chem. Soc. 130:430–431.

    Article  PubMed  CAS  Google Scholar 

  • Nieminen, T., Neubauer, P., Sivela, S., Vatamo, S., Silfverberg, P., and Salkinoja-Salonen, M. 2008. Volatile compounds produced by fungi grown in strawberry jam. LWT- Food Sci. Technol. 41:2051–2056.

    Article  CAS  Google Scholar 

  • Nijland, R. and Burgess, J. G. 2010. Bacterial olfaction. Biotechnol. J. 5:1–4.

    Article  CAS  Google Scholar 

  • Owen, S. M., Clark, S., Pompe, M., and Semple, K. T. 2007. Biogenic volatile organic compounds as potential carbon sources for microbial communities in soil from the rhizosphere of Populus tremula. FEMS Microbiol. Lett. 268:34–39.

    Article  PubMed  CAS  Google Scholar 

  • Pal, K. K. and McSpadden Gardener, B. 2006. Biological control of Plant Pathogens. The Plant Health Instructor doi:10.1094/PHI-A-2006-1117-02 http://www.apsnet.org/edcenter/advanced/topics/Pages/BiologicalControl.aspx.

  • Palková, Z. and Váhová, L. 2003. Ammonia signaling in yeast colony formation. Int. Rev. Cytol. 225:229–272.

    Article  PubMed  Google Scholar 

  • Pelusio, F., Nilsson, T., Montanarella, L., Tilio, R., Larsen, B., Facchetti, S., and Madsen, J. 1995. Headspace solid-phase microextraction analysis of volatile organic sulfur compounds in black and white truffle aroma. J. Agric. Food Chem. 43:2138–2143.

    Article  CAS  Google Scholar 

  • Pessi, G. and Haas, D. 2000. Transcriptional control of the hydrogen cyanide biosynthetic genes hcnABC by the anaerobic regulator ANR and the quorum sensing regulators LasR and RhlR in Pseudomonas aeruginosa. J. Bacteriol. 182:6940–6949.

    Article  PubMed  CAS  Google Scholar 

  • Pittard, B. T., Freeman, L. R., Later, D. W., and Lee, M. L. 1982. Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle. Appl. Environ. Microbiol. 43:1504–1506.

    PubMed  CAS  Google Scholar 

  • Ranjard, L. and Richaume, A. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Res. Microbiol. 152:707–716.

    Article  PubMed  CAS  Google Scholar 

  • Rigamonte, T. A., Pylro, V. S., and Duarte G. F. 2010. The role of mycorrhization helper bacteria in the establishment and action of ectomycorrhizae associations. Braz. J. Microbiol. 41:832–840.

    Google Scholar 

  • Roesch, L. F., Fulthorpe, R. R., Riva, A., Casella, G., Hadwin, A. K., Kent, A. D., Daroub, S. H., Camargo, F. A., Farmerie, W. G., and Triplett, E.W. 2007. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1:283–290.

  • Ruiz, R., Bilbao, R., and Murillo, M. B. 1998. Adsorption of different VOC onto soil minerals from gas phase; Influence of mineral, type of VOC, and air humidity. Environ. Sci. Technol. 32:1079–1864.

    Article  CAS  Google Scholar 

  • Ryan, R. P. and Dow, J. M. 2008. Diffusible signals and interspecies communication in bacteria. Microbiol. 154:1845–1858.

    Article  CAS  Google Scholar 

  • Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Wie, H. X., Pare, P. W., and Kloepper, J. W. 2003. Bacterial volatiles promote growth in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 100:4927–4932.

    Article  PubMed  CAS  Google Scholar 

  • Schafer, B. M. 2006. Particle shape, pp. 1249–1250, in W. Chesworth (ed.), Encyclopedia of soil science. Taylor & Francis, Boca Raton, Florida.

    Google Scholar 

  • Schäfer, H., Myronova, N., and Boden, R. 2010. Microbial degradation of dimethyldisulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. J. Exp. Bot. 61:315–334.

    Article  PubMed  CAS  Google Scholar 

  • Schippers, B., Meijer, J. W., and Liem, J. I. 1982. Effect of ammonia and other soil volatiles on germination and growth of soil fungi. Trans. Br. Mycol. Soc. 79:253–259.

    Article  CAS  Google Scholar 

  • Schöller, E. G., Gürtler, H., Pedersen, R., Molin, S., and Wilkins, K. 2002. Volatile metabolites from actinomycetes. J. Agric. Food Chem. 50:2615–2621.

    Article  PubMed  CAS  Google Scholar 

  • Schrey, S. D., Schellhammer, M., Ecke, M., Hampp, R., and Tarkka, M. T. 2005. Mycorrhiza helper bacterium Streptomyces AcH 505 induces differential gene expression in the ectomycorrhizal fungus Amanita muscaria. New Phytol. 168:205–216.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S. and Dickschat, J. S. 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep. 24:814–842.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, S., Fuhlendorff, J., and Reichenbach, H. 2004. Identification and synthesis of volatiles released by the myxobacterium Chondromyces crocatus. Tetrahedron 60:3863–3872.

    Article  CAS  Google Scholar 

  • Shatalin, K., Shatalina, E., Mironov, A., and Nudler, E. 2011. H2S: a universal defense against antibiotics in bacteria. Science. 334:986–990.

    Google Scholar 

  • Sobik, P., Grunenberg, J., Boöroöczky, J., Laatsch, H., Wagner-Doöbler, I., and Schulz, S. 2007. Identification, synthesis, and conformation of tri- and tetrathiacycloalkanes from marine bacteria. J. Org. Chem. 72:3776–3782.

    Article  PubMed  CAS  Google Scholar 

  • Son, S. H., Khan, Z., Kim, S. G., and Kim, Y. H. 2009. Plant growth-promoting rhizobacteria, Paenibacillus polymyxa and Paenibacillus lentimorbus suppress disease complex caused by root-knot nematode and Fusarium wilt fungus. J. Appl. Microbiol. 107:524–532.

    Article  PubMed  CAS  Google Scholar 

  • Standing, D. and Killham, K. 2007. The soil environment, pp. 1–22, in J. D. van Elsas, J. K. Jansson, and J. T. Trevors (eds.), Modern soil microbiology. Taylor & Francis, Boca Raton, Florida.

    Google Scholar 

  • Stoppacher, N., Kluger, B., Zeilinger, S., Krska, R., and Schuhmacher, R. 2010. Identification and profiling of volatile metabolites of the biocontrol fungus Trichoderma atroviride by HS-SPME-GC-MS. J. Microbiol. Methods 81:187–193.

    Article  PubMed  CAS  Google Scholar 

  • Stotzky, G. and Schenck, S. 1976. Volatile organic compounds and microorganisms. CRC Crit. Rev. Microbiol. 4:333–382.

    Article  PubMed  CAS  Google Scholar 

  • Stritzke, K., Schulz, S., Laatsch, H., Helmke, E., and Beil, W. 2004. Novel caprolactones from a marine streptomycete. J. Nat. Prod. 67:395–401.

    Article  PubMed  CAS  Google Scholar 

  • Sunesson, A. L., Vaes, W. H. J., Nilsson, C. A., Blomquist, G., andersson, B., and Carlson, R. 1995. Identification of volatile metabolites from five fungal species cultivated on two media. Appl. Environ. Microbiol. 61:2911–2918.

    PubMed  CAS  Google Scholar 

  • Sunesson, A. L., Nilsson, C. A., andersson, B., and Blomquist, G. 1996. Volatile metabolites produced by two fungal species cultivated on building materials. Ann. Occup. Hyg. 40:397–410.

    PubMed  CAS  Google Scholar 

  • Tehrani, A. S., Disfani, F. A., Hedjaroud, G. A., and Mohammadi, M. 2001. Antagonistic effects of several bacteria on Verticillium dahliae the causal agent of cotton wilt. Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet. 66:95–101.

    PubMed  CAS  Google Scholar 

  • Tehrani, A. S., Zebarjad, A., Hedjaroud, G. A., and Mohammadi, M. 2002. Biological control of soybean damping-off by antagonistic rhizobacteria. Meded. Rijksuniv. Gent Fak. Landbouwkd. Toegep. Biol. Wet. 67:377–380.

    Google Scholar 

  • Tracey, R. P. and Britz, T. J. 1989. Freon 11 extraction of volatile metabolites formed by certain lactic acid bacteria. Appl. Environ. Microbiol. 55:1617–1623.

    PubMed  CAS  Google Scholar 

  • Tylka, G. L., Hussey, R. S., and Roncadori, R. W. 1991. Axenic germination of vesicular-arbuscular mycorrhizal fungi: effect of selected Streptomyces species. Phytopathology 81:754–759.

    Article  Google Scholar 

  • Van Lancker, F., Adams, A., Demulle, B., De Saeger, S., Moretti, A., Van Petheghem, C., and De Kimpe, N. 2008. Use of headspace SPME-GC-MS for the analysis of the volatiles produced by indoor molds grown on different substrates. J. Environ. Monit. 10:1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Vespermann, A., Kai, M., and Piechulla, B. 2007. Rhizobacterial volatiles affect the growth of fungi and Arabidopsis thaliana. Appl. Environ. Microbiol. 73:5639–5641.

    Article  PubMed  CAS  Google Scholar 

  • Voisard, C., Keel, C., Haas, D., and Défago, G. 1989. Cyanide production by Pseudomonas fluorescens helps to suppress black root of tobacco under gnotobiotic conditions. EMBO J. 8:351–358.

    PubMed  CAS  Google Scholar 

  • Von Reuss, S., Kai, M., Piechulla, B., and Francke, W. 2010. Octamethylbicyclo(3.2.1)octadienes from Serratia odorifera. Angew. Chem. Int. Ed. 49:2009–2010.

    Article  CAS  Google Scholar 

  • Walker, T. S., Bais, H. P., Grotewold, E., and Vivanco, J. M. 2003. Root exudation and rhizosphere biology. Plant Physiol. 132:44–51.

    Article  PubMed  CAS  Google Scholar 

  • Walker, T. S., Bais, H. P., Deziel, E., Schweitzer, H. P., Rahme, L. G., Fall, R., and Vivanco, J. M. 2004. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formations, and root exudation. Plant Physiol. 134:3210–3331.

    Article  CAS  Google Scholar 

  • Wan, M., Li, G., Zhang, J., Jiang, D., and Huang, H. C. 2008. Effect of volatile substances of Streptomyces platensis F-1 on control of plant fungal diseases. Biol. Control 46:552–559.

    Article  Google Scholar 

  • Wargo, M. J. and Hogan, D. A. 2006. Fungal-bacterial interactions: a mixed bag of mingling microbes. Curr. Opin. Microbiol. 9:359–364.

    Article  PubMed  CAS  Google Scholar 

  • Weise, T., Kai, M., Gummesson, A., Troeger, A., Von Reuß, S., Piepenborn, S., Kosterka, F., Sklorz, M., Zimmermann, R., Francke, W., and Piechulla, B. 2012. Volatile organic compounds produced by the phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria 85–10. Beilstein J. Org. Chem. 8:579–596.

  • Wei-Wei, L., Wie, M., Bing-Yu, Z., You-Chen, D., and Feng, L. 2008. Antagonistic activities of volatiles from four strains of Bacillus spp. and Paenibacillus spp. against soil-borne plant pathogens. Agr. Sci. China 7:1104–1114.

    Article  Google Scholar 

  • Wenke, K., Kai, M., and Piechulla, B. 2009. Belowground volatiles facilitate interactions between plant roots and soil organisms. Planta 231:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Wenke, K., Weise, T., Warnke, R., Valverde, C., Wanke, D., Kai, M., and Piechulla, B. 2012. Bactertial volatiles mediating information between bacteria and plants, pp. 327–348, in G. Witzany (ed.), Biocommunication, signaling and communication in plants. Springer Verlag, Berlin, Heidelberg.

    Chapter  Google Scholar 

  • Wheatley, R. E. 2002. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek 81:357–364.

    Article  PubMed  CAS  Google Scholar 

  • Wheatley, R., Hackett, C., Bruce, A., and Kundzewiczd, A. 1997. Effect of substrate composition on production of volatile organic compounds from Trichoderma spp. inhibitory to wood decay fungi. Int. Biodeterior Biodegradation 39:199–205.

    Article  CAS  Google Scholar 

  • Wiggins, R. J., Wilks, M., and Tabaqchali, S. 1985. Analysis by gas liquid chromatography of production of volatile fatty acids by anaerobic bacteria grown on solid medium. J. Clin. Pathol. 38:933–936.

    Article  PubMed  CAS  Google Scholar 

  • Wilkins, K., Larsen, K., and Simkus, M. 2000. Volatile metabolites from mold growth on building materials and synthetic media. Chemosphere 41:437–446.

    Article  PubMed  CAS  Google Scholar 

  • Will, M. E. and Sylvia, D. M. 1990. Interaction of rhizosphere bacteria, fertilizer, and vesicular-arbuscular mycorrhizal fungi with sea oats. Appl. Environ. Microbiol. 56:2073–2079.

    PubMed  CAS  Google Scholar 

  • Will, C., Nacke, H., Thürmer, A., and Daniel, R. 2010. Schlaglicht Biodiversität/Charakterisierung und Nutzung der bakteriellen Diversität in Bodenmetagenomen. Genomxpress 1.10:9–11.

    Google Scholar 

  • Williamson, P. R. 1997. Laccase and melanin in the pathogenesis of Cryptococcus neoformans. Front. Biosci. 2:e99–e107.

    PubMed  CAS  Google Scholar 

  • Winson, M. K., Camara, M., Latifi, A., Foglino, M., Chhabra, S. R., Daykin, M., Bally, M., Chapon, V., Salmond, G. P., Bycroft, B. W., et al. 1995. Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. U.S.A. 92:9427–9431.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S., Krings, U., Zorn, H., and Berger, R. G. 2005. Volatile compounds from the fruiting bodies of beefsteak fungus Fistulina hepatica (Schaeffer: Fr.) Fr. Food Chem. 92:221–226.

    Article  CAS  Google Scholar 

  • Xavier, L. J. C. and Germida, J. J. 2003. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35:471–478.

    Article  CAS  Google Scholar 

  • Xiao, X., Chen, H., Chen, H., Wang, J., Ren, C., and Wu, L. 2008. Impact of Bacillus subtilis JA, a biocontrol strain of fungal plant pathogens, on arbuscular mycorrhiza formation in Zea mays. World J. Microbiol. Biotechnol. 24:1133–1137.

    Article  Google Scholar 

  • Zhang, C. L., Wang, G. P., Mao, L. J., Komonzelazowska, M., Yuan, Z. L., Fu-Cheng Lin, F. C., Druzhinia, I. S., and Kubick, C. P. 2010. Muscodor fengyangensis sp. nov. from southeast China: morphology, physiology and production of volatile compounds. Fungal Biol. 114:797–808.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, L. J., Yang, X. N., Li, X. Y., Mu, W., and Liu, F. 2011. Antifungal, insecticidal and herbicidal properties of volatile components from Paenibacillus polymyxa Strain BMP-11. Agr. Sci. China 10:728–736.

    Article  CAS  Google Scholar 

  • Zhu, J., Bean, H. D., Kuo, Y. M., and Hill, J. E. 2010. Fast detection of volatile organic compounds from bacterial cultures by secondary electrospray ionization-mass spectrometry. Clin. Microbiol. 48:4426–4431.

    Article  CAS  Google Scholar 

  • Zou, C. S., Mo, M. H., Gu, Y. Q., Zhou, J. P., and Zhang, K. Q. 2007. Possible contribution of volatile-producing bacteria in soil fungistasis. Soil Biol. Biochem. 39:2371–2379.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Hubert Bahl reading and correcting of Table 1 and the related chapter in the paper, Dr. Marco Kai for critical reading of the manuscript and for drawing Fig. 1, and Robert Penthin, who helped to develop the DOVE-MO database. We are grateful for the funding by the DFG (to BP153/26 and/28).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgit Piechulla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Effmert, U., Kalderás, J., Warnke, R. et al. Volatile Mediated Interactions Between Bacteria and Fungi in the Soil. J Chem Ecol 38, 665–703 (2012). https://doi.org/10.1007/s10886-012-0135-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-012-0135-5

Keywords

Navigation