Skip to main content
Log in

Male Phyllotreta striolata (F.) Produce an Aggregation Pheromone: Identification of Male-specific compounds and Interaction with Host Plant Volatiles

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The chrysomelid beetle Phyllotreta striolata is an important pest of Brassicaceae in Southeast Asia and North America. Here, we identified the aggregation pheromone of a population of P. striolata from Taiwan, and host plant volatiles that interact with the pheromone. Volatiles emitted by feeding male P. striolata attracted males and females in the field. Headspace volatile analyses revealed that six sesquiterpenes were emitted specifically by feeding males. Only one of these, however, elicited an electrophysiological response from antennae of both sexes. A number of host plant volatiles, e.g., 1-hexanol, (Z)-3-hexen-1-ol, and the glucosinolate hydrolysis products allyl isothiocyanate (AITC), 3-butenyl isothiocyanate, and 4-pentenyl isothiocyanate also elicited clear responses from the antenna. The active male-specific compound was identified as (+)-(6R,7S)-himachala-9,11-diene by chiral stationary phase gas-chromatography with coupled mass spectrometry, and by comparison with reference samples from Abies nordmanniana, which is known to produce the corresponding enantiomer. The pheromone compound was synthesized starting from (–)-α-himachalene isolated from Cedrus atlantica. Under field conditions, the activity of the synthetic pheromone required concomitant presence of the host plant volatile allyl isothiocyanate. However, both synthetic (+)-(6R,7S)-himachala-9,11-diene alone and in combination with AITC were attractive in a two-choice laboratory assay devoid of other natural olfactory stimuli. We hypothesize that P. striolata adults respond to the pheromone only if specific host volatiles are present. In the same laboratory set up, more beetles were attracted by feeding males than by the synthetic stimuli. Thus, further research will be necessary to reveal the components of a more complex blend of host or male-produced semiochemicals that might enhance trap attractiveness in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Import authorization obtained under Dir 2008/61/EC

References

  • Andersen, N. H., Bissonette, P., Liu, C. B., Shunk, B., Ohta, Y., Tseng, C. L. W., Moore, A., and Huneck, S. 1977. Sesquiterpenes of nine European liverworts from the genera, Anastrepta, Bazzania, Jungermannia, Lepidozia, and Scapania. Phytochemistry 16:1731–1751.

    Article  CAS  Google Scholar 

  • Ayres, B. D., Ayres, M. P., Abrahamson, M. D., and Teale, S. A. 2001. Resource partitioning and overlap in thee sympatric species of Ips bark beetles (Coleoptera: Scolytidae). Oecologia 128:443–453.

    Article  Google Scholar 

  • Bartelt, R. J., Weaver, D. K., and Arbogast, R. T. 1995. Aggregation pheromone of Carpophilus dimidatus (F.) (Coleoptera: Nitidulidae) and responses to Carpophilus pheromones in South Carolina. J. Chem. Ecol. 21:1763–1779.

    Article  CAS  Google Scholar 

  • Bartelt, R. J., Cossé, A. A., Zilkowski, B. W., Weisleder, D., and Momany, F. A. 2001. Male-specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J. Chem. Ecol. 27:2397–423.

    Article  CAS  PubMed  Google Scholar 

  • Bartelt, R. J., Weisleder, D., and Momany, F. A. 2003. Total synthesis of himachalene sesquiterpenes of Aphthona and Phyllotreta flea beetles. Synthesis 117–123.

  • Bartelt, R. J., Cossé, A. A., Zilkowski, B. W., Weisleder, D., Grode, S. H., Wiedenmann, R. N., and Post, S. L. 2006. Dimethylfuran-lactone pheromone from males of Galerucella calmariensis and Galerucella pusilla. J. Chem. Ecol. 32:693–712.

    Article  CAS  PubMed  Google Scholar 

  • Burgess, L. 1977. Flea beetles (Coleoptera-Chysomelidae) attacking rape crops in the Canadian prairie provinces. Can. Entomol. 109: 21–32.

    Article  Google Scholar 

  • Chen, C. C., Shy, J. F., Ko, W. F., Hwang, T. F., and Lin, C. S. 1991. Studies on the ecology and control of Phyllotreta striolata (Fab.) (II) Developmental duration and population fluctuation. Plant Protection Bulletin (Taipei), 33:354–363.

  • Cossé, A. A., Bartelt, R. J., and Zilkowski, B. W. 2002. Identification and electrophysiological activity of a novel hydroxy ketone emitted by male cereal leaf beetles. J. Nat. Prod. 65:1156–1160.

    Article  PubMed  Google Scholar 

  • Cossé, A. A., Bartelt, R. J., Zilkowski, B. W., Bean, D. W., and Andress, E. R. 2006. Behaviorally active green leaf volatiles for monitoring the leaf beetle, Diorhabda elongata, a biocontrol agent of saltcedar, Tamarix spp. J. Chem. Ecol. 32:2695–2708.

    Article  PubMed  Google Scholar 

  • Csonka, É., Tóth, M., and Ujváry, I. 2007. Differences in host-plant related chemical communication of the flea beetles Phyllotreta cruciferae Goeze and Ph. vittula Redtenbacher (Coleoptera, Chysomelidae). Acta Phytopathol. Hun. 42:343–352.

    Article  CAS  Google Scholar 

  • Dickens, J. C., Oliver, J. E., Hollister, B., Davis, J. C., and Klun, J. A. 2002. Breaking a paradigm: Male produced aggregation pheromone for the Colorado potato beetle. J. Exp. Biol. 205:1925–1933.

    PubMed  Google Scholar 

  • Dickens, J. C. 2006. Plant volatiles moderate response to aggregation pheromone in Colorado potato beetle. J. Appl. Entomol. 130: 26–31.

    Article  Google Scholar 

  • Fahey, J. W., Zalcmann, A. T., and Talalay P. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    Article  CAS  PubMed  Google Scholar 

  • Feeny, P., Paauwe, K. L., and Demong, N. J. 1970. Flea beetles and mustard oils: host plant specificity of Phyllotreta cruciferae and P. striolata adults (Coleoptera: Chysomelidae). Ann. Entomol. Soc. Am. 63:832–841.

    Google Scholar 

  • Görnitz, K. 1956. Weitere Untersuchungen über Insekten-Attraktivstoffe aus Cruciferen. Nachichtenblatt Deutscher Pflanzenschutzdienst 10:137–147.

    Google Scholar 

  • Gruber, M. Y., Xu, N., Grenkow, L., Li, X., Onyilagha, J., Soroka, J. J., Westcott, N. D., and Hegedus, D. D. 2009. Responses of the crucifer flea beetle to Brassica volatiles in an olfactometer. Environ. Entomol. 38:1467–1479.

    Article  CAS  PubMed  Google Scholar 

  • Hofmann, J., Zimmermann, G., and Kopinke, F. D. 1994. The thermal aromatization of methyl-1,3-cyclohexadienes - An important argument against commonly accepted sigmatropic 1,7-H-shift reactions. J. Prakt. Chem. 336:201–206.

    Article  CAS  Google Scholar 

  • Heikertinger, F. 1941. Bestimmungstabelle der paläarktischen Phyllotreta-Arten. Kol. Rundsch. 27:15–64, 69–116.

    Google Scholar 

  • Joseph, T. C. and Dev, S. 1968. Studies in Sesquiterpenes-XXXI Absolute stereochemistry of himachalenes. Tetrahedron 24:3841–3852.

    Article  CAS  Google Scholar 

  • Kaissling, K. E. 1971. Insect Olfaction, pp. 351-431. in L. M Beidler (ed.). Handbook of Sensory Physiology, vol. IV. Chemical Senses Springer Verlag, Berlin.

    Google Scholar 

  • Lamb, R. J. 1989. Entomology of oilseed Brassica crops. Annu. Rev. Entomol. 34:211–229.

    Article  Google Scholar 

  • Landolt, P. J. and Phillips, T. W. 1997. Host plant influences on sex pheromone behaviour of phytophagous insects. Annu. Rev. Entomol. 42:371–391.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, B. K. 1994. The chemosensory basis of host-plant recognition in Chysomelidae, pp. 141–151. in P. H. Jolivet, M. L. Cox, and E. Petitpierre (eds.). Novel Aspects of the Biology of Chysomelidae. Kluwer Academic Pub.

  • MMohamedsaid, M. S. 2004. Catalogue of the Malaysian Chysomelidae (Insecta: Coleoptera). Pensoft, Sofia-Moscow.

    Google Scholar 

  • Mori, K. 2005. Synthesis of (R)-ar-turmerone and its conversion to (R)-ar-himachalene, a pheromone component of the flea beetle: (R)-ar-himachalene is dextrorotatory in hexane, while levorotatory in chloroform. Tetrahedron: Asymmetry 16:685–692.

    Article  CAS  Google Scholar 

  • Muto, S., Bando, M., and Mori, K. 2004. Synthesis and stereochemistry of the four himachalene-type sesquiterpenes isolated from the flea beetle (Aphthona flava) as pheromone candidates. Eur. J. Org. Chem. 1946–1952.

  • Nielsen, J. K. 1988. Crucifer-feeding Chysomelidae: mechanisms of host plant finding and acceptance, pp. 25–40. in P. H. Jolivet, E. Petitpierre, and T. H. Hsiao (eds.). Biology of Chysomelidae. Kluwer Academic Pub.

  • Nielsen, J. K., Hansen, M. L., Agerbirk, N., Petersen, B. L., and Halkier, B. A. 2001. Responses of the flea beetles Phyllotreta nemorum and P. cruciferae to metabolically engineered Arabidopsis thaliana with an altered glucosinolate profile. Chemoecology 11:75–83.

    Article  CAS  Google Scholar 

  • Pandy, R. C. and Dev, S. 1968. XXX Synthesis of ar-himachalene and himachalanes. Tetrahedron 24:3829-3839.

    Article  Google Scholar 

  • Parker, B. L., Talekar, N. S., and Skinner M. 1995. Field Guide: Insect pests of selected vegetables in tropical and subtropical Asia. Asian Vegetable Research and Development Center, Shanhua, Tainan, Taiwan.

    Google Scholar 

  • Peng, C. and Weiss, M. J. 1992. Evidence of an aggregation pheromone in the flea beetle, Phyllotreta cruciferae (Goeze) (Coleoptera: Chysomelidae) J. Chem. Ecol. 18:875–884.

    Article  CAS  Google Scholar 

  • Peng, C., Bartelt, R. J., and Weiss, M. J. 1999. Male crucifer flea beetles produce an aggregation pheromone. Physiol. Entomol. 24:98–99.

    Article  Google Scholar 

  • Pivnick, K. A. and Jarvis, B. J. 1991. Rate of release of allyl isothiocyanate by intact and damaged oriental mustard plants and implications for host plant location by insects. pp. 512–517 in D. I. McGregor (ed.). Proceedings, VII International Rapeseed Congress. Groupe Consultatif International de Recherche sur le Colza. Paris, France

    Google Scholar 

  • Pivnick, K. A., Lamb, R. J., and Reed, D. 1992. Response of flea beetles, Phyllotreta spp., to mustard oils and nitriles in field trapping experiments. J. Chem. Ecol. 18:863–873.

    Article  CAS  Google Scholar 

  • Rao, S., Cossé, A. A., Zilkowski, B. W., and Bartelt, R. J. 2003. Aggregation pheromone of the cereal leaf beetle: field evaluation and emission from males in the laboratory. J. Chem. Ecol. 29:2165–2175.

    Article  CAS  PubMed  Google Scholar 

  • Reddy, G. V. P. and Guerrero, A. 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci. 9:253–261.

    Article  CAS  PubMed  Google Scholar 

  • Reinecke, A., Ruther, J., Tolasch, T., Francke, W., and Hilker, M. 2002a. Alcoholism in cockchafers: orientation of male Melolontha melolontha towards green leaf alcohols. Naturwissenschaften 89:265–269.

    Article  CAS  PubMed  Google Scholar 

  • Reinecke, A., Ruther, J., and Hilker, M. 2002b. The scent of food and defence: green leaf volatiles and toluquinone as sex attractant mediate mate finding in the European cockchafer Melolontha melolontha. Ecol. Lett. 5:257–263.

    Article  Google Scholar 

  • Reinecke, A., Ruther, J,. and Hilker, M. 2006. Pre-copulatory isolation in sympatric Melolontha species (Coleoptera: Scarabaeidae). Agr. For. Entomol. 8:289–293.

    Article  Google Scholar 

  • Renwick, J. A. A. 2002. The chemical world of crucivores: lures, treats and traps. Entomol. Exp. Appl. 104:35–42.

    Article  CAS  Google Scholar 

  • Ruther, J., Reinecke, A., Thiemann, K., Tolasch, T., Francke, W., and Hilker, M. 2000. Mate finding in the forest cockchafer, Melolontha hippocastani, mediated by volatiles from plants and females. Physiol. Entomol. 25:172–179.

    Article  CAS  Google Scholar 

  • Ruther, J., Reinecke, A., and Hilker, M. 2002. Plant volatiles in the sexual communication of Melolontha hippocastani: response towards time-dependent bouquets and novel function of (Z)-3-hexen-1-ol as a sexual kairomone. Ecol. Entomol. 27:76–83.

    Article  Google Scholar 

  • Sano, S. and Mori, K. 1999. Pheromone Synthesis, CXCV, Synthesis of (1R*,3R*,7R*)-3-mhimachalene, the racemate of the male-produced sex pheromone of the sandfly Lutzomyia longipalpis from Jacobina, Brazil. Eur. J. Org. Chem. 1679–1686.

  • Seybold, S. J., Huber, D. P. W., Lee, J. C., Graves, A. D., and Bohlmann, J. 2006. Pine monoterpenes and pine bark beetles: A marriage of convenience for defense and chemical communication. Phytochem. Rev. 5:143–178.

    Article  CAS  Google Scholar 

  • Soroka, J. J., Bartelt, R. J., Zilkowski, B. W., and Cossé, A. A. 2005. Responses of flea beetle Phyllotreta cruciferae to synthetic aggregation pheromone components and host plant volatiles in field trials. J. Chem. Ecol. 31:1829–1843.

    Article  CAS  PubMed  Google Scholar 

  • Tóth, M., Csonka, E., Bartelt, R. J., Cossé, A. A., Zilkowski, B. W., Muto, S. E., and Mori, K. 2005. Pheromonal activity of compounds identified from male Phyllotreta cruciferae: field tests of racemic mixtures, pure enantiomers, and combinations with allyl isothiocyanate. J. Chem. Ecol. 31:2705–2720.

    Article  PubMed  Google Scholar 

  • Tóth, M., Csonka, È., Bakcsa, F., Benedek, P., Szarukán, I., Gomboc, S., Toshova, T., Subchev, M., and Ujváry, I. 2007. Species spectrum of flea beetles (Phyllotreta spp., Coleoptera: Chrysomelidae) attracted to allyl isothiocyanate-baited traps. Z. Naturforsch. C. 62:772–778.

    Google Scholar 

  • Van Den Dool, H. and Kratz, P. D. 1963. A generalization of the retention index system including linear temperature programmed gas-liquid partition chromatography. J. Chromatogr. 11:463–471.

    Article  Google Scholar 

  • Van Epp Jr., J. E., Boyd, D. R., and Berchtold, G. A. 1981. Aromatization of arene 1,2-oxides. 1-(trimethylsilyl)benzene 1,2-oxide. J. Org. Chem. 46:1817–1820.

    Article  Google Scholar 

  • Verkerk, R., Scheiner, M., Krumbein, A., Ciska, E., Holst, B., Rowland, I., De Schijver, R., Hansen, M., Gerhäuser, C., Mithen R., and Dekker M. 2009. Glucosinolates in Brassica vegetables: The influence of the food supply chain on intake, bioavailability and human health. Mol. Nutr. Food Res. 53:219–265.

    Article  Google Scholar 

  • Wertheim, B., Van Baalen, E.-J., Dicke, M., and Vet, L. E. M. 2004. Pheromone-mediated aggregation in non-social arthopods: an evolutionary ecological perspective. Annu. Rev. Entomol. 50:321–346.

    Article  Google Scholar 

  • Zilkowski, B. W., Bartelt, R. J., Cossé, A. A., and Petroski, R. J. 2006. Male-produced aggregation pheromone compounds from the eggplant flea beetle (Epitrix fuscula): identification, synthesis, and field bioassays. J. Chem. Ecol. 32:2543–2558.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Gesellschaft für Technische Zusammenarbeit (GTZ) and the Max Planck Gesellschaft for funding. FB was supported by a grant from FAZIT-Stiftung, Germany. The authors thank Stefan Garms for advice and support regarding the identification of sesquiterpenes and for providing the Scapania undulata extract, Lin Mei-ying and the staff of Entomology unit at AVRDC-The World Vegetable Center for supporting field experiments, and Daniel Veit, head of the workshop at ICE Jena for his continued support and advice with experimental equipment. Hervé Mosimann is indebted to Xavier Garnier for technical skill in performing large scale distillation. Jiří Svoboda thanks his father, Prof. Jiří Svoboda, for help with the catalytic hydrogenation of (–)-α-himachalene.

Author contributions

F.B. designed and performed experiments, analyzed natural extracts and synthetic products, and prepared the manuscript; I.M., C.U., R.S., and C.B. designed experiments, provided experimental facilities, insects, and acquired GTZ funding; C.V. and H.M. performed isolation of the precursor and reference substances and designed the synthetis pathway of A; J.S. and W.B. performed the synthesis of A and confirmed the structure of the product; A.R. and B.S.H. designed experiments and prepared the manuscript; MPG funding was provided though B.S.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franziska Beran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beran, F., Mewis, I., Srinivasan, R. et al. Male Phyllotreta striolata (F.) Produce an Aggregation Pheromone: Identification of Male-specific compounds and Interaction with Host Plant Volatiles. J Chem Ecol 37, 85–97 (2011). https://doi.org/10.1007/s10886-010-9899-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9899-7

Key Words

Navigation