Skip to main content
Log in

Arbuscular Mycorrhizal Fungi Protect a Native Plant from Allelopathic Effects of an Invader

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The allelopathic potential of the Eurasian invasive plant Alliaria petiolata has been well documented, with the bulk of the effects believed to be mediated by arbuscular mycorrhizal fungi (AMF). We exposed the herbaceous annual Impatiens pallida, which is native to North America, to fractionated A. petiolata extracts at four developmental stages (germination, presymbiosis growth, symbiosis formation, and symbiosis growth) by using exposure levels expected to be similar to field levels. Surprisingly, we found strong direct effects on I. pallida germination and growth, but no indirect effects on I. pallida growth mediated by AMF. We also observed strong synergistic effects with a complete A. petiolata extract that inhibited I. pallida germination and presymbiosis root growth more than either a glucosinolate or flavonoid enriched fraction alone. In fact, the flavonoid enriched fraction tended to stimulate germination and presymbiosis root growth. In contrast to these strong direct effects, I. pallida plant growth during both the symbiosis formation and symbiosis growth phases was unaffected by A. petiolata extracts. We also found no inhibition of AMF colonization of roots or soils by A. petiolata extracts. We show that AMF can actually ameliorate allelopathic effects of an invasive plant, and suggest that previously observed allelopathic effects of A. petiolata may be due to direct inhibition of plant and fungal growth before symbiosis formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bais, H. P., Vepachedu, R., Gilroy, S., Callaway, R. M., and Vivanco, J. M. 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301:1377–1380.

    Article  CAS  PubMed  Google Scholar 

  • Barkosky, R. R., Butler, J. L., and Einhellig, F. A. 1999. Mechanisms of hydroquinone-induced growth reduction in leafy spurge. J. Chem. Ecol. 25:1611–1621.

    Article  CAS  Google Scholar 

  • Barto, E. K. and Cipollini, D. 2009a. Density-dependent phytotoxicity of Impatiens pallida plants exposed to extracts of Alliaria petiolata. J. Chem. Ecol. 35:495–504.

    Article  CAS  PubMed  Google Scholar 

  • Barto, E. K. and Cipollini, D. 2009b. Garlic mustard (Alliaria petiolata) removal method affects native establishment. Invasive Plant Science and Management 2:230–236.

  • Barto, E. K. and Cipollini, D. 2009c. Half-lives and field soil concentrations of Alliaria petiolata secondary metabolites. Chemosphere 76:71–75.

    Article  PubMed  Google Scholar 

  • Blum, U., Gerig, T. M., Worsham. A. D., Holappa, L. D., and King, L. D. 1992. Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J. Chem. Ecol. 18:2191–2221.

    Article  Google Scholar 

  • Callaway, R. M., Cipollini, D., Barto, K., Thelen, G. C., Hallett, S. G., Prati, D., Stinson, K., and Klironomos, J. 2008. Novel weapons: Invasive plant suppresses fungal mutualists in America but not in its native Europe. Ecology 89:1043–1055.

    Article  PubMed  Google Scholar 

  • Chang, M., Netzly, D. H., Butler, L. G., and Lynn, D. G. 1986. Chemical regulation of distance: characterization of the first natural host germination stimulant for Striga asiatica. J. Am. Chem. Soc. 108:7858.

    Article  CAS  Google Scholar 

  • Choesin, D. N. and Boerner, R. E. J. 1991. Allyl isothiocyanate release and the allelopathic potential of Brassica napus (Brassicaceae). Am. J. Bot. 78:1083–1090.

    Article  CAS  Google Scholar 

  • Cipollini, D. F., Stevenson, R., and Cipollini, K. 2008. Contrasting effects of allelochemicals from two invasive plants on the performance of a nonmycorrhizal plant. Int. J. Plant Sci. 169:371–375.

    Article  Google Scholar 

  • Einhellig, F. A., Rasmussen, J. A., Hejl, A. M., and Souza, I. F. 1993. Effects of root exudate sorgoleone on photosynthesis. J. Chem. Ecol. 19:369–375.

    Article  CAS  Google Scholar 

  • Friese, C. F. and Allen, M. F. 1991. The spread of VA mycorrhizal fungal hyphae in the soil: inoculum types and external hyphal architecture. Mycologia 83:409–418.

    Article  Google Scholar 

  • Gimsing, A. L., Poulsen, J. L., Pedersen, H. L., and Hansen, H. C. B. 2007. Formation and degradation kinetics of the biofumigant benzyl isothiocyanate in soil. Environ. Sci. Technol. 41:4271–4276.

    Article  CAS  PubMed  Google Scholar 

  • Gimsing, A. L., Sørensen, J. C., Tovgaard, L., Jørgensen, A. M. F., and Hansen, H. C. B. 2006. Degradation kinetics of glucosinolates in soil. Environ. Toxicol. Chem. 25:2038–2044.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, J. A. and Estevez-Braun, A. 1997. Phytonematicidal activity of aromatic compounds related to shikimate pathway. Pestic. Biochem. Physiol. 58:193–197.

    Article  CAS  Google Scholar 

  • Haribal, M. and Renwick, J. A. A. 1998. Isovitexin 6″-O-β-D-glucopyranoside: a feeding deterrent to Pieris napi oleracea from Alliaria petiolata. Phytochemistry 47:1237–1240.

    Article  CAS  Google Scholar 

  • Haribal, M., Yang, Z., Attygalle, A. B., Renwick, J. A. A., and Meinwald, J. 2001. A cyanoallyl glucoside from Alliaria petiolata, as a feeding deterrent for larvae of Pieris napi oleracea. J. Nat. Prod. 64:440–443.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, Y. and Shudo, K. 1996. Chemistry of biologically active benzoxazinoids. Phytochemistry 43:551–559.

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto, Y., Shudo, K., and Okamoto, T. 1984. Mutagenic chemistry of heteroaromatic amines and mitomycin C. Acc. Chem. Res. 17:403–408.

    Article  CAS  Google Scholar 

  • Inderjit and Callaway, R. M. 2003. Experimental designs for the study of allelopathy. Plant Soil 256:1–11.

  • Inderjit and Mallik, A. U. 1999. Nutrient status of black spruce (Picea mariana [Mill.] BSP) forest soils dominated by Kalmia angustifolia L. Acta Oecol. 20:87–92.

  • Inderjit and Weiner, J. 2001. Plant allelochemical interference or soil chemical ecology? Perspect. Plant Ecol. Evol. Syst. 4:3–12.

  • Johnson, D., Vandenkoornhuyse, P. J., Leake, J. R., Gilbert, L., Booth, R. E., Grime, J. P., Young, J. P. W., and Read, D. J. 2004. Plant communities affect arbuscular mycorrhizal fungal diversity and community composition in grassland microcosms. New Phytol. 161:503–515.

    Article  Google Scholar 

  • Kaminsky, R. 1981. The microbial origin of the allelopathic potential of Adedostoma fasciculatum H & A. Ecol. Monogr. 51:365–382.

    Article  CAS  Google Scholar 

  • Leck, M. A. 1979. Germination behavior of Impatiens capensis Meerb. (Balsaminaceae). Bartonia:1–14.

  • Mccarthy, B. C. and Hanson, S. L. 1998. An assessment of the allelopathic potential of the invasive weed Alliaria petiolata (Brassicaceae). Castanea 63:68–73.

    Google Scholar 

  • Prati, D. and Bossdorf, O. 2004. Allelopathic inhibition of germination by Alliaria petiolata (Brassicaceae). Am. J. Bot. 91:285–288.

    Article  Google Scholar 

  • R development core team. 2008. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Roberts, K. J. and Anderson, R. C. 2001. Effect of garlic mustard [Alliaria petiolata (Bieb. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. Am. Midl. Nat. 146:146–152.

    Article  Google Scholar 

  • Smith, S. E. and Read, D. J. 2008. Mycorrhizal Symbiosis. Elsevier Science Ltd London.

  • Stampe, E. D. and Daehler, C. C. 2003. Mycorrhizal species identity affects plant community structure and invasion: a microcosm study. Oikos 100:362–372.

    Article  Google Scholar 

  • Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati, D., and Klironomos, J. N. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biol. 4:0727–0731.

    Article  CAS  Google Scholar 

  • Tsanuo, M. K., Hassanali, A., Hooper, A. M., Khan, Z., Kaberia, F., Pickett, J. A., and Wadhams, L. J. 2003. Isoflavanones from the allelopathic aqueous root exudate of Desmodium uncinatum. Phytochemistry 64:265–273.

    Article  CAS  PubMed  Google Scholar 

  • Tsao, R., Yu, Q., Friesen, I., Potter, J., and Chiba, M. 2000. Factors affecting the dissolution and degradation of Oriental mustard-derived sinigrin and allyl isothiocyanate in aqueous media. J. Agric. Food. Chem. 48:1898–1902.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn, S. F. and Berhow, M. A. 1999. Allelochemicals isolated from tissues of the invasive weed garlic mustard (Alliaria petiolata). J. Chem. Ecol. 25:2495–2504.

    Article  CAS  Google Scholar 

  • Walk, T. C., Van Erp, E., and Lynch, J. P. 2004. Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann. Bot. 94:119–128.

  • Weston, L. A., Harmon, R., and Mueller, S. 1989. Allelopatic potential of sorghum-sudangrass hybrid (Sudex). J. Chem. Ecol. 15:1855–1865.

    Article  Google Scholar 

  • Wolfe, B. E., Rodgers, V. L., Stinson, K. A., and Pringle, A. 2008. The invasive plant Alliaria petiolata (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. J. Ecol. 96:777–783.

    Article  Google Scholar 

  • Wu, H., Haig, T., Pratley, J., Lemerle, D., and An, M. 2000. Distribution and exudation of allelochemicals in wheat Triticum aestivum. J. Chem. Ecol. 26:2141–2154.

    Article  CAS  Google Scholar 

  • Yoder, J. I. 2001. Host-plant recognition by parasitic Scrophulariaceae. Curr. Opin. Plant Biol. 4:359–365.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Eusondia Arnett, Steph Enright, and Cherissa Rainey for help in the lab, and Sarah Tebbens and Chris Barton for helpful discussions about fractal analysis. Helpful comments from two anonymous reviewers improved the manuscript. Funding was provided by an Environmental Protection Agency Greater Research Opportunities Fellowship to K Barto (#91673701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathryn Barto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barto, K., Friese, C. & Cipollini, D. Arbuscular Mycorrhizal Fungi Protect a Native Plant from Allelopathic Effects of an Invader. J Chem Ecol 36, 351–360 (2010). https://doi.org/10.1007/s10886-010-9768-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-010-9768-4

Key Words

Navigation