Skip to main content
Log in

Same Host-Plant, Different Sterols: Variation in Sterol Metabolism in an Insect Herbivore Community

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Insects lack the ability to synthesize sterols de novo, which are required as cell membrane inserts and as precursors for steroid hormones. Herbivorous insects typically utilize cholesterol as their primary sterol. However, plants rarely contain cholesterol, and herbivorous insects must, therefore, produce cholesterol by metabolizing plant sterols. Previous studies have shown that insects generally display diversity in phytosterol metabolism. Despite the biological importance of sterols, there has been no investigation of their metabolism in a naturally occurring herbivorous insect community. Therefore, we determined the neutral sterol profile of Solidago altissima L., six taxonomically and ecologically diverse herbivorous insect associates, and the fungal symbiont of one herbivore. Our results demonstrated that S. altissima contained Δ7-sterols (spinasterol, 22-dihydrospinasterol, avenasterol, and 24-epifungisterol), and that 85% of the sterol pool existed in a conjugated form. Despite feeding on a shared host plant, we observed significant variation among herbivores in terms of their qualitative tissue sterol profiles and significant variation in the cholesterol content. Cholesterol was absent in two dipteran gall-formers and present at extremely low levels in a beetle. Cholesterol content was highly variable in three hemipteran phloem feeders; even species of the same genus showed substantial differences in their cholesterol contents. The fungal ectosymbiont of a dipteran gall former contained primarily ergosterol and two ergosterol precursors. The larvae and pupae of the symbiotic gall-former lacked phytosterols, phytosterol metabolites, or cholesterol, instead containing an ergosterol metabolite in addition to unmetabolized ergosterol and erogsterol precursors, thus demonstrating the crucial role that a fungal symbiont plays in their nutritional ecology. These data are discussed in the context of sterol physiology and metabolism in insects, and the potential ecological and evolutionary implications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abrahamson, W. G. and Weis, A. E. 1997. Evolutionary Ecology Across Three Trophic Levels. Princeton University Press, Princeton, New Jersey.

    Google Scholar 

  • Arnold, A. E. and Lutzoni, F. 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88:541–549.

    Article  PubMed  Google Scholar 

  • Behmer, S. T. and Elias, D. O. 1999a. The nutritional significance of sterol metabolic constraints in the generalist grasshopper Schistocerca americana. J. Insect Physiol. 45:339–348.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S. T. and Elias, D. O. 1999b. Phytosterol structure as a basis of food aversion learning in the grasshopper Schistocerca americana (Orthoptera: Acrididae). Physiol. Entomol. 24:18–27.

    Article  CAS  Google Scholar 

  • Behmer, S. T. and Elias, D. O. 2000. Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera: Acrididae). Physiol. Biochem. Zool. 73:219–230.

    Article  PubMed  CAS  Google Scholar 

  • Behmer, S. T. and Grebenok, R. J. 1998. Impact of dietary sterols on life-history traits of a caterpillar. Physiol. Entomol. 23:165–175.

    Article  CAS  Google Scholar 

  • Behmer, S. T. and Nes, W. D. 2003. Insect sterol nutrition and physiology: a global overview. Adv. Insect Physiol. 31:1–72.

    Article  CAS  Google Scholar 

  • Behmer, S. T., Elias, D. O., and Bernays, E. A. 1999a. Post-ingestive feedbacks and associative learning regulate the intake of unsuitable sterols in a generalist grasshopper. J. Exp. Biol. 202:739–748.

    PubMed  CAS  Google Scholar 

  • Behmer, S. T., Elias, D. O., and Grebenok, R. J. 1999b. Phytosterol metabolism and absorption in the generalist grasshopper Schistocerca americana (Orthoptera: Acrididae).absorption in the generalist grasshopper Schistocerca americana (Orthoptera: Acrididae). Arch. Insect Biochem. Physiol. 42:13–25.

    Article  PubMed  CAS  Google Scholar 

  • Berenbaum, M. R. 1995. Turnabout is fair play: secondary roles for primary compounds. J. Chem. Ecol. 21:925–940.

    Article  CAS  Google Scholar 

  • Bissett, J. and Borkent, A. 1988. Ambrosia galls: the significance of fungal nutrition in the evolution of the Cecidomyiidae (Diptera), pp. 203–225, in K. A. Pirozynski and D. L. Hawksworth (eds.). Coevolution of Fungi with Plants and Animals. Academic, San Diego, California.

    Google Scholar 

  • Blackman, R. L. and Eastop, V. F. 2006. Aphids on the World’s Herbaceous Plants and Shrubs. Wiley, Hoboken, New Jersey.

    Google Scholar 

  • Campbell, B. C. and Nes, W. D. 1983. A reappraisal of sterol biosynthesis and metabolism in aphids. J. Insect Physiol. 29:149–156.

    Article  CAS  Google Scholar 

  • Clark, A. J. and Bloch, K. 1959. Function of sterols in Dermestes vulpinus. J. Biol. Chem. 234:102–106.

    Google Scholar 

  • Clayton, R. B. 1964. The utilization of sterols by insects. J. Lipid Res. 5:3–19.

    CAS  Google Scholar 

  • Farr, D. F., Bills, G. F., Chamuris, G. P., and Rossman, A. Y. 1989. Fungi on Plants and Plant Products in the United States. APS, St. Paul, Minnesota.

    Google Scholar 

  • Feldhaufer, M. F., Weirich, G. F., Imberski, R. B., and Svoboda, J. A. 1995. Ecdysteroid production of Drosophila melanogaster reared on defined diets. Insect Biochem. Mol. Biol. 25:709–721.

    Article  Google Scholar 

  • Gagné, R. J. 1968. A taxonomic revision of the genus Asteromyia (Diptera: Cecidomyiidae). Misc. Pub. Entomol. Soc. Am. 6:1–40.

    Google Scholar 

  • Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59:41–66.

    Article  PubMed  CAS  Google Scholar 

  • Janson, E. M., Stireman, J. O., III, Singer, M. S., and Abbot, P. 2008. Phytophagous insect-microbe mutualisms and adaptive evolutionary diversification. Evolution 62:997–1012.

    Article  PubMed  Google Scholar 

  • Kircher, H. W., Rosenstein, F. U., and Fogleman, J. C. 1984. Selective uptake and lack of dealkylation of phytosterols by cactophilic species of Drosophila. Lipids 19:235–238.

    Article  CAS  Google Scholar 

  • Kok, L. T., Norris, D. M., and Chu, H. M. 1970. Sterol metabolism as a basis for a mutualistic symbiosis. Nature 225:661–662.

    Article  PubMed  CAS  Google Scholar 

  • MacDonald, D. L., Nham, D. N., Cochran, W. K., and Ritter, K. S. 1990. Differences in the sterol composition of Heliothis zea fed Zea mays versus Medicago sativa. Insect Biochem. 20:437–442.

    Article  CAS  Google Scholar 

  • Messina, F. J. and Root, R. B. 1980. Association between leaf beetles and meadow goldenrods (Solidago spp.) in central New York. Ann. Entomol. Soc. Am. 73:641–646.

    Google Scholar 

  • Mondy, N. and Corio-Costet, M. -F. 2000. The response of the grape berry moth (Lobesia botrana) to a dietary fungus (Botrytis cinerea): the significance of fungus sterols. J. Insect Physiol. 46:1557–1564.

    Article  PubMed  CAS  Google Scholar 

  • Moreau, R. A., Whitaker, B. D., and Hicks, K. B. 2002. Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog. Lipid Res. 41:457–500.

    Article  PubMed  CAS  Google Scholar 

  • Nes, W. R. and Mckean, M. L. 1977. Biochemistry of Steroids and Other Isopentenoids. University Park Press, Baltimore, Maryland.

    Google Scholar 

  • Noda, H. and Koizumi, Y. 2003. Sterol biosynthesis by symbiotes: cytochrome P450 sterol C-22 desaturase genes from yeastlike symbiotes of rice planthoppers and anobiid beetles. Insect Biochem. Mol. Biol. 33:649–658.

    Article  PubMed  CAS  Google Scholar 

  • Omoloye, A. A. and Vidal, S. 2007. Abundance of 24-methylenecholesterol in traditional African rice as an indicator of resistance to the African rice gall midge, Orseolia oryzivora Harris and Gagné. Entomol. Sci. 10:249–257.

    Article  Google Scholar 

  • Panero, J. L. and Funk, V. A. 2008. The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol. Phyolgenet. Evol. 47:757–782.

    Article  CAS  Google Scholar 

  • Rees, H. H. 1985. Biosynthesis of ecdysone, pp. 249–293, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Pergamon Press Inc., New York, New York.

    Google Scholar 

  • Richards, W. R. 1972. Review of the Solidago-inhabiting aphids in Canada with descriptions of three new species. Can. Entomol. 104:1–34.

    Article  Google Scholar 

  • Ritter, K. S. 1984. Metabolism of Δ0-, Δ5-, and Δ7-sterols by larvae of Heliothis zea. Arch. Insect Biochem. Physiol. 1:281–296.

    Article  CAS  Google Scholar 

  • Ritter, K. S. and Nes, W. R. 1981. The effects of the structure of sterols on the development of Heliothis zea. J. Insect Physiol. 27:419–424.

    Article  CAS  Google Scholar 

  • Ritter, K. S., Weiss, B. A., Norrbom, A. L., and Nes, W. R. 1982. Identification of Δ5,7,24-methylene sterols and methylsterols in the brain and whole-body of Atta cephalotes isthmicola. Comp. Biochem. Phys. B 71:345–349

    Article  Google Scholar 

  • Robbins, W. E. 1963. Studies on the utilization, metabolism and function of sterols in the house-fly, Musca domestica, pp. 269–280, in Radiation and Radioisotopes Applied to Insects of Agricultural Importance. International Atomic Energy Agency, Vienna, Austria.

  • Robinson, A. G. 1985. Annotated list of Uroleucon (Uroleucon, Uromelan, Satula) of America north of Mexico, with keys. Can. Entomol. 117:1029–1054.

    Article  Google Scholar 

  • Salt, T. A., Xu, S., Patterson, G. W., and Adler, J. H. 1991. Diversity of sterol biosynthetic capacity in the Caryophyllidae. Lipids 26:604–613.

    Article  CAS  Google Scholar 

  • Schaller, H. 2003. The role of sterols in plant growth and development. Prog. Lipid Res. 42:163–175.

    Article  PubMed  CAS  Google Scholar 

  • Smith, H., Wingfield, M. J., Crous, P. W., and Coutinho, T. A. 1996. Sphaeropsis sapinea and Botryosphaeria dothidea endophytic in Pinus spp. in South Africa. S. Afr. J. Bot. 62:86–88.

    Google Scholar 

  • Svoboda, J. A. and Thompson, M. J. 1985. Steroids, pp. 137–175, in G. A. Kerkut and L. I. Gilbert (eds.). Comprehensive Insect Physiology, Biochemistry, and Pharmacology. Pergamon Press Inc., New York, New York.

    Google Scholar 

  • Svoboda, J. A., Dutky, S. R., Robbins, W. E. and Kaplanis, J. N. 1977. Sterol composition and phytosterol utilization and metabolism in milkweed bug. Lipids 12: 318–321.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda, J. A., Thompson, M. J., Herbert, E. W., Shortino, T. J., and Szczepanik-Van Eeuin, P. A. 1982. Utilization and metabolism of dietary sterols in the honey bee and yellow fever mosquito. Lipids 17:220–225.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda, J. A., Herbert, E. W. JR., Lusby, W. R., and Thompson, M. J. 1983. Comparison of sterols of pollens, honeybee workers, and prepupae from field sites. Arch. Insect Biochem. Physiol. 1:25–31.

    Article  CAS  Google Scholar 

  • Svoboda, J. A., Imberski, R. B., and Lusby, W. R. 1989. Drosophila melanogaster does not dealkylate [14C]sitosterol. Experientia 45:983–985.

    Article  CAS  Google Scholar 

  • Swigoňová, Z. and Kjer, K. M. 2004. Phylogeny and host plant association in the leaf beetle genus Trirhabda LeConte (Coleoptera: Chrysomelidae). Mol. Phylogenet. Evol. 32:358–374.

    Article  PubMed  CAS  Google Scholar 

  • Tada, M., Takahashi, T., and Koyama, H. 1974. Triterpenes and sterol from roots of Aster scaber. Phytochemistry 13:670–671.

    Article  CAS  Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596–1599.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, J. H. and Kopp, D. D. 1980. Life history, morphology, and taxonomy of Acutalis tartarea (Say). J. New York Entomol. Soc. 88:179–185.

    Google Scholar 

  • White, T. J., Bruns, T. D., Lee, S., and Taylor, J. W. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics, pp. 315–322, in M. A. Innis, D. H. Gelfand, J. S. Sninsky, and T. J. White (eds.). PCR Protocols: A Guide to Methods and Applications. Academic: New York, New York.

    Google Scholar 

  • Wojciechowski, Z. A. 1991. Biochemistry of phytosterol conjugates, pp. 361–395, in G. W. Patterson and W. D. Nes (eds.). Physiology and Biochemistry of Sterols. American Oil Chemist’s Society, Champaign, Illinois.

    Google Scholar 

  • Zangerl, A. R. and Berenbaum, M. R. 2004. Genetic variation in primary metabolites of Pastinaca sativa; can herbivores act as selective agents? J. Chem. Ecol. 30:1985–2002.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Emily Peeden for gall dissection efforts. John Stireman aided with plant community characterization at Beaver Creek Wildlife Area. Denise Weyer assisted with plant community characterization at Shelby Bottoms. Dean Della Penna provided laboratory space and financial support for some of the sterol extraction, sterol sample preparation and analysis. Chris Dietrich provided information about the host range of A. tartarea. Two anonymous reviewers provided helpful criticisms. This work was supported by a National Science Foundation grant (DEB 0614433) awarded to P. Abbot, and by a CSREES NRI-USDA grant (2007-35302-18185) awarded to S.T. Behmer and R.J. Grebenok.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric M. Janson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janson, E.M., Grebenok, R.J., Behmer, S.T. et al. Same Host-Plant, Different Sterols: Variation in Sterol Metabolism in an Insect Herbivore Community. J Chem Ecol 35, 1309–1319 (2009). https://doi.org/10.1007/s10886-009-9713-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-009-9713-6

Keywords

Navigation