Skip to main content
Log in

Pheromone Disruption of Argentine Ant Trail Integrity

Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Disruption of Argentine ant trail following and reduced ability to forage (measured by bait location success) was achieved after presentation of an oversupply of trail pheromone, (Z)-9-hexadecenal. Experiments tested single pheromone point sources and dispersion of a formulation in small field plots. Ant walking behavior was recorded and digitized by using video tracking, before and after presentation of trail pheromone. Ants showed changes in three parameters within seconds of treatment: (1) Ants on trails normally showed a unimodal frequency distribution of walking track angles, but this pattern disappeared after presentation of the trail pheromone; (2) ants showed initial high trail integrity on a range of untreated substrates from painted walls to wooden or concrete floors, but this was significantly reduced following presentation of a point source of pheromone; (3) the number of ants in the pheromone-treated area increased over time, as recruitment apparently exceeded departures. To test trail disruption in small outdoor plots, the trail pheromone was formulated with carnuba wax-coated quartz laboratory sand (1 g quartz sand/0.2 g wax/1 mg pheromone). The pheromone formulation, with a half-life of 30 h, was applied by rotary spreader at four rates (0, 2.5, 7.5, and 25 mg pheromone/m2) to 1- and 4-m2 plots in Volcanoes National Park, Hawaii. Ant counts at bait cards in treated plots were significantly reduced compared to controls on the day of treatment, and there was a significant reduction in ant foraging for 2 days. These results show that trail pheromone disruption of Argentine ants is possible, but a much more durable formulation is needed before nest-level impacts can be expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Balança, G., and De Visscher, M.-N. 1997. Impacts on nontarget insects of a new insecticide compound used against the desert locust [Schistocerca gregaria (Forskal 1775)]. Arch. Environ. Contam. Toxicol. 32:58–62.

    Article  PubMed  Google Scholar 

  • Cavill, G. W. K., Robertson, P. L., and Davies, N. W. 1979. An Argentine ant Iridomyrmex humilis aggregation factor. Experientia (Basel) 35:989–990.

    CAS  Google Scholar 

  • Cole, F. R., Medeiros, A. C., Loope, L. L., and Zuehlke, W. W. 1992. Effects of the Argentine ant on arthropod fauna of Hawaiian high-elevation shrubland. Ecology 73:1313–1322.

    Article  Google Scholar 

  • El-Sayed, A. M. 2008. The pherobase: database of insect pheromones and semiochemicals. http://www.pherobase.com. Accessed May 1 2008.

  • Gaston, L. K., Shory, H. H., and Saario, S. A. 1967. Insect population control by the use of sex pheromone to inhibit orientation between the sexes. Nature 213:1155.

    Article  CAS  Google Scholar 

  • Greenberg, L., Klotz, J. H., and Rust, M. K. 2006. Liquid borate bait for control of the Argentine ant, Linepithema humile, in organic citrus (Hymenoptera: Formicidae). Fla. Entom. 89:469–474.

    Article  CAS  Google Scholar 

  • Holway, D. A. 1999. Competitive mechanisms underlying the displacement of native ants by the invasive Argentine ant. Ecology 80:238–251.

    Google Scholar 

  • Holway, D. A., Lach, L., Suarez, A. V., Tsutsui, N. D., and Case, T. J. 2002. The causes and consequences of ant invasions. Annu. Rev. Ecol. Syst. 33:181–233.

    Article  Google Scholar 

  • Hooper-Bui, L. M., and Rust, M. K. 2000. Oral toxicity of abamectin, boric acid, fipronil, and hydramethylnon to laboratory colonies of Argentine ants (Hymenoptera: Formicidae). J. Econ. Entomol. 93:858–864.

    Article  PubMed  CAS  Google Scholar 

  • Human, K. G., and Gordon, D. M. 1997. Effects of Argentine ants on invertebrate diversity in Northern California. Conserv. Biol. 11:1242–1248.

    Article  Google Scholar 

  • Itioka, T., and Inoue, T. 1996. The role of predators and attendant ants in the regulation and persistence of a population of the citrus mealybug Pseudococcus citriculus in a Satsuma orange orchard. Appl. Entomol. Zool. 31:195–202.

    Google Scholar 

  • Karg, G., Suckling, D. M., and Bradley, S. J. 1994. Absorption and release of pheromone of Epiphyas postvittana (Lepidoptera: Tortricidae) by apple leaves. J. Chem. Ecol. 20:1825–1841.

    Article  CAS  Google Scholar 

  • Klotz, J., Greenberg, L., and Venn, E. C. 2000. Evaluation of two hydramethylnon granular baits for control of Argentine ant (Hymenoptera: Formicidae). Sociobiology 36:201–207.

    Google Scholar 

  • Krushelnycky, P. D., and Reimer, N. J. 1998. Efficacy of Maxforce bait for control of the Argentine ant (Hymenoptera: Formicidae) in Haleakala National Park, Maui, Hawaii. Environ. Entomol. 27:1473–1481.

    CAS  Google Scholar 

  • Lach, L. 2005. Interference and exploitation competition of three nectar-thieving invasive ant species. Insect. Soc. 52:257–262.

    Article  Google Scholar 

  • Liebherr, J. K., and Krushelnycky, P. D. 2007. Unfortunate encounters? Novel interactions of native Mecyclothorax, alien Trechus obtusus (Coleoptera: Carabidae), and Argentine ant (Linepithema humile, Hymenoptera: Formicidae) across a Hawaiian landscape. J. Insect Conserv. 11:61–73.

    Article  Google Scholar 

  • Mayer, M. S., and McLaughlin, J. R. 1991. Handbook of insect pheromones and sex attractantsCRC, Boca Raton, FL1083pp.

    Google Scholar 

  • Moreno, D. S., Haney, P. B., and Luck, R. F. 1987. Chlorpyrifos and diazinon as barriers to Argentine ant (Hymenoptera: Formicidae) foraging on citrus trees. J. Econ. Entomol. 80:208–214.

    CAS  Google Scholar 

  • Nesbitt, B. F., Beevor, P. S., Hall, D. R., Lester, R., and Dyck, V. A. 1975. Identification of the female sex pheromones of the moth, Chilo suppressalis. J. Insect Physiol. 21:1883–1886.

    Article  CAS  Google Scholar 

  • Piccardi, P., Capizzi, A., Cassani, G., Spinelli, P., Arsura, E., and Massardo, P. 1977. A sex pheromone component of the old world bollworm Heliothis armigera. J. Insect Physiol. 23:1443–1445.

    Article  CAS  Google Scholar 

  • Pimentel, D., Lach, L., Zuniga, R., and Morrison, D. 2000. Environmental and economic costs of nonindigenous species in the United States. Bioscience 50:53–65.

    Article  Google Scholar 

  • Robinson, S. W., and Cherrett, J. M. 1978. The possible use of methyl 4-methylpyrrole-2-carboxylate, an ant trail pheromone, as a component of an improved bait for leaf-cutting ant (Hymenoptera: Formicidae) control. Bull. Ent. Res. 68:159–170.

    Article  CAS  Google Scholar 

  • Shorey, B. H., Gaston, L. K., Gerber, R. G., Phillips, P. A., and Wood, D. L. 1992. Disruption of foraging by Argentine ants, Iridomyrmex humilis (Mayr) (Hymenoptera: Formicidae), in citrus trees through the use of semiochemicals and related chemicals. J. Chem. Ecol. 18:2131–2142.

    Article  CAS  Google Scholar 

  • Suarez, A. V., and Case, T. J. 2002. Bottom-up effects on persistence of a specialist predator: ant invasions and horned lizards. Ecol. Appl. 12:291–298.

    Article  Google Scholar 

  • Suarez, A. V., Bolger, D. T., and Case, T. J. 1998. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056.

    Article  Google Scholar 

  • Suckling, D. M., and Angerilli, N. P. D. 1996. Pheromone point source distribution affects spike frequency and communication disruption of Epiphyas postvittana (Lepidoptera: Tortricidae). Environ. Entomol. 25:101–108.

    Google Scholar 

  • Suckling, D. M., and Karg, G. 2000. Pheromones and semiochemicals, pp. 63–99, in J. Rechcigl, and N Rechcigl (eds.). Biological and Biotechnical Control of Insect PestsCRC, Boca Raton, FL.

    Google Scholar 

  • Suckling, D. M., Green, S. R., Gibb, A. R., and Karg, G. 1999. Predicting atmospheric concentration of pheromone in treated apple orchards. J. Chem. Ecol. 25:117–139.

    Article  CAS  Google Scholar 

  • Tatsuki, S., Teryama, M., Tanaka, Y., and Fukumoto, T. 2005. Behavior-disrupting agent and behavior disrupting method of Argentine ant. Patent pub. no. US2005/0209344A1.

  • Van Vorhis Key, S. E., and Baker, T. C. 1982a. Specificity of laboratory trail following by the Argentine ant, Iridomyrmex humilis (Mayr), to (Z)-9-hexadecenal, analogs, and gaster extract. J. Chem. Ecol. 8:1057–1063.

    Article  CAS  Google Scholar 

  • Van Vorhis Key, S. E., and Baker, T. C. 1982b. Trail-following responses of the Argentine ant, Iridomyrmex humilis (Mayr), to a synthetic trail pheromone component and analogs. J. Chem. Ecol. 8:3–14.

    Article  CAS  Google Scholar 

  • Van Vorhis Key, S. E., and Baker, T. C. 1982c. Trail pheromone-conditioned anemotaxis by the Argentine ant, Iridomyrmex humilis. Entomol. Exp. Appl. 32:232–237.

    Google Scholar 

  • Van Vorhis Key, S. E., and Baker, T. C. 1986. Observations on the trail deposition and recruitment behaviors of the Argentine ant, Iridomyrmex humilis (Hymenoptera: Formicidae). Ann. Entomol. Soc. Am. 79:283–288.

    Google Scholar 

  • Van Vorhis Key, S. E., Gaston, L. K., and Baker, T. C. 1981. Effects of gaster extract trail concentration on the trail following behavior of the Argentine ant, Iridomyrmex humilis (Mayr). J. Insect Physiol. 27:363–370.

    Article  Google Scholar 

  • Vega, S. J., and Rust, M. K. 2001. The Argentine ant—a significant invasive species in agricultural, urban and natural environments. Sociobiology 37:3–25.

    Google Scholar 

  • Wright, R. H. 1964. After pesticides—what? Nature 204:121–125.

    Article  PubMed  CAS  Google Scholar 

  • Zar, J. H. 1984. Biostatistical analysisPrentice-Hall International, London.

    Google Scholar 

  • Zhakharov, A. A., and Thompson, L. C. 1998. Effects of repeated use of fenoxycarb and hydramethylnon baits on nontarget ants. J. Entomol. Sci. 33:212–220.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Foundation for Research Science and Technology (“Managing Invasive Hymenoptera” CO6X0601 and “Better Border Biosecurity”, www.b3nz.org), the Organisation for Economic Cooperation and Development (Co-operative Research Programme: Biological Resource Management for Sustainable Agricultural Systems), the U.S. Geological Survey and National Park Service (“Park-Oriented Biological Support”), and a grant to DMS from the New Zealand Horticultural Science Advancement Trust. We thank M. Euaparadorn, B. Wright, and A. Parker for help in conducting field trials and Jeremy McNeil for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Suckling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video A

Argentine ants walking on a wall before and after the disruption of trail integrity using an excess of trail pheromone, (Z)-9-hexedecenal (Experiment 1.1). Double click below to view the video (DOC 1.06 MB).

Fig. A

Proportion of plots with visible Argentine ant trails in Experiment 2.1 under small plot disruption (1 m2; n = 4 replicates) (DOC 33.0 KB).

Fig. B

Proportion of plots with visible Argentine ant trails in Experiment 2.2 under small plot disruption (4 m2; n = 6 replicates) (DOC 27.5 KB).

Fig. C

Persistence of Argentine ant trail pheromone (Z)-9-hexedecenal in wax-based ant sand in (DOC 23.5 KB).

Fig. D

Wind speed (±SEM) with height above ground on three dates with consistent trade winds at Broomsedge Burn, Hawaii Volcanoes National Park. Gusts into the boundary layer of bare soil are likely under these conditions (DOC 23.5 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suckling, D.M., Peck, R.W., Manning, L.M. et al. Pheromone Disruption of Argentine Ant Trail Integrity. J Chem Ecol 34, 1602–1609 (2008). https://doi.org/10.1007/s10886-008-9566-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9566-4

Keywords

Navigation