Skip to main content
Log in

Effects of Methyl Jasmonate and an Endophytic Fungus on Plant Resistance to Insect Herbivores

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Tall fescue (Lolium arundinaceum) forms a mutualistic relationship with the fungal endophyte Neotyphodium coenophialum. The endophyte provides constitutive resistance to herbivores through its production of alkaloid compounds. Moreover, herbivore attack induces elevated synthesis of loline alkaloids, that is, the fungus also provides wound-inducible resistance for its host. Jasmonic acid and its conjugates are key signaling compounds in many plant species and play a role systemically in the upregulation of defensive compounds within plants following attack by herbivores. The purpose of our study was to determine if and how the plant and fungus respond to methyl jasmonate (MJ) exposure and if these responses interact in antagonistic or synergistic ways. Plants were exposed to MJ via gaseous diffusion within a controlled environment chamber. Response to MJ was assessed with an herbivore bioassay, gas chromatography–mass spectrometry to quantify alkaloids, and real-time reverse transcriptase-polymerase chain reaction to quantify mRNA from a loline alkaloid biosynthesis gene. We found that MJ hindered endophyte-infected tall fescue’s resistance against aphids by downregulating transcription of the LolC gene. The opposite pattern was observed for endophyte-free tall fescue; its exposure to MJ resulted in a significant increase in resistance to aphids, apparently through stimulating defense compounds produced by the plant. These results indicate that, when tall fescue lacks fungal infection, MJ induces the plant to produce its own defensive compounds. In contrast, while endophyte-infected plants are defended from herbivores by fungally produced lolines, this defense is compromised by MJ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnard, C., and Frankel, O. H. 1964. Grass, grazing animals, and man in historic perspective, pp. 1–12, in C. Barnard (ed.). Grasses and GrasslandsMacMillan, New York.

    Google Scholar 

  • Breen, J. 1994. Acremonium endophyte interactions with enhanced plant resistance to insects. Annu. Rev. Entomol. 39:401–423.

    Article  Google Scholar 

  • Bultman, T. L., Bell, G., and Martin, W. D. 2004. A fungal endophyte mediates reversal of wound-induced resistance and constrains tolerance in a grass. Ecology 85:679–685.

    Article  Google Scholar 

  • Bush, L. P., Cornelius, P. L., Buckner, R. C., Varney, D. R., Chapman, R. A., Burriss, P. B. II, Kennedy, C. W., Jones, T. A., and Saunders, M. J. 1982. Association of N-acetyl loline and N-formyl loline with Epichloe typhina in tall fescue. Crop Science. 22:941–943.

    CAS  Google Scholar 

  • Bush, L. P., Fannin, F. F., Siegal, M. R., Dahlman, D. L., and Burton, H. R. 1993. Chemistry, occurrence and biological effects of saturated pyrrolizidine alkaloids associated with endophyte–grass interactions. Agric. Ecosyst. Environ. 44:81–102.

    Article  CAS  Google Scholar 

  • Bush, L. P., Wilkinson, H. H., and Schardl, C. L. 1997. Bioprotective alkaloids of grass-fungal endophyte symbioses. Plant Physiol. 114:1–7.

    PubMed  CAS  Google Scholar 

  • Cheplick, G. P., and Clay, K. 1988. Acquired chemical defences in grasses: the role of fungal endophytes. Oikos 52:309–318.

    Article  Google Scholar 

  • Clay, K. 1988. Fungal endophytes of grasses: a defensive mutualism between plants and fungi. Ecology. 69:10–16.

    Article  Google Scholar 

  • Clay, K. 1990. Fungal endophytes of grasses. Annu. Rev. Ecol. Syst. 21:275–297.

    Article  Google Scholar 

  • Clay, K. 1991. Fungal endophytes, grasses, and herbivores., pp. 199–226, in P. Barbosa, V. A. Krischik, and C. G. Jones (eds.). Microbial Mediation of Plant–Herbivore InteractionsWiley, New York.

    Google Scholar 

  • Clement, S. L., Kaiser, W. J., and Eichenseer, H. 1994. Acremonium endophytes in germplasms of major grasses and their utilization for insect resistance, pp. 185–199, in C. W. Bacon, and J.F. White Jr. (eds.). Biotechnology of endophytic fungi of grassesCRC, Boca Raton.

    Google Scholar 

  • Conover, W. J., and Iman, R. L. 1981. Rank transformations as a bridge between parametric and nonparametric statistics. Am. Statist. 35:124–129.

    Article  Google Scholar 

  • Creelman, R. A., and Mullet, J. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    Article  PubMed  CAS  Google Scholar 

  • de Bruxelles, G. L., and Roberts, M. R. 2001. Signals regulating multiple responses to wounding and herbivores. Critical Rev. Plant Sci. 20:487–521.

    Article  Google Scholar 

  • Eichenseer, H., Dahlman, D. L., and Bush, L. P. 1991. Influence of endophyte infection, plant age and harvest interval on Rhopalosiphum padi survival and its relation to quantity of N-formyl and N-acetyl loline in tall fescue. Entomol. Exp. Appl. 60:29–38.

    Article  CAS  Google Scholar 

  • Faeth, S. H., and Bultman, T. L. 2002. Endophytic fungi and interactions among host plants, herbivores, and natural enemies, pp. 89–123, in T. Tscharntke, and B.A. Hawkins (eds.). Multitrophic Level InteractionsCambridge University Press, Cambridge.

    Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. PNAS USA 87:7713–7716.

    Article  PubMed  CAS  Google Scholar 

  • Farmer, E. E., and Ryan, C. A. 1992. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell 4:129–134.

    Article  PubMed  CAS  Google Scholar 

  • Gols, R., Roosjen, M., Dijkman, H., and Dicke, M. 2003. Induction of direct and indirect plant responses by jasmonic acid, low spider mite densities, or a combination of jasmonic acid treatment and spider mite infestation. J. Chem. Ecol. 29:2651–2666.

    Article  PubMed  CAS  Google Scholar 

  • Gunlach, H., Muller, M. J., Kutchan, T. M., and Zenk, M. H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Nat. Acad. Sci. USA 89:2389–2393.

    Article  Google Scholar 

  • Gutierrez, C., Castanera, P., and Torres, V. 1988. Wound-induced changes in DIMBOA (2,4 dihydroxy-7-methoxy-2H-1, 4 benzoxazin-3(4H)-one) concentration in maize plants caused by Sesamia nonagriodes (Lepidoptera: Noctuidae). Annals Appl. Biol. 113:447–454.

    Article  CAS  Google Scholar 

  • Hall, S. S., and Horton, R. F. 1994. Methyl jasmonate and bean leaf abscission. Plant Growth Reg. 14:187–192.

    Article  CAS  Google Scholar 

  • Karban, R., and Myers, J. H. 1989. Induced plant responses to herbivory. Annu. Rev. Ecol. System. 20:331–348.

    Article  Google Scholar 

  • Keilholz, U., Willhauck, M., Rimoldi, D., Brasseur, F., Dummer, W., Rass, K., De Vries, T., Blaheta, J., Voit, C., Lethé, B., and Burchill, S. 1998. Reliability of reverse transcription-polymerase chain reaction (RT-PCR)-based assays for the detection of circulating tumor cells: a quality-assurance initiative of the EORTC Melanoma Cooperative Group. Eur. J. Cancer 34:750–753.

    Article  PubMed  CAS  Google Scholar 

  • Klun, J. A., Tipton, C. L., and Brindley, T. A. 1967. 2,4-Dihydroxy-7-methoxy-1, 4-benzoxazin-3-one (DIMBOA), an active agent in the resistance of maize to the European corn borer. J. Econom. Entomol. 60:1529–1533.

    CAS  Google Scholar 

  • Latch, G. C. M. 1993. Physiological interactions of endophytic fungi and their hosts: biotic stress tolerance imparted to grasses by endophytes. Agri. Ecosys. Environ. 44:143–156.

    Article  Google Scholar 

  • Leather, S. R., Walters, K. F. A., and Dixon, A. F. G. 1989. Factors determining the pest status of the bird cherry-oat aphid Rhopalosiphum padi (L.) (Homoptera: Aphididae), in Europe: a study and review. Bull. Entomol. Res. 79:345–360.

    Article  Google Scholar 

  • Lehtonen, P., Helander, M., and Saikkonen, K. 2005. Are endophyte-mediated effects on herbivores conditional on soil nutrients? Oecologia 142:38–45.

    Article  PubMed  Google Scholar 

  • Lou, Y., Hua, X., Turlings, T., Cheng, J., Chen, X., and Ye, G. 2006. Differences in induced volatile emissions among rice varieties result in differential attraction and parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae in the field. J. Chem. Ecol. 32:2375–2387.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, K., Wilkinson, J., Hiatt, B., Knauf, V., and Kajiwara, T. 1999. Molecular cloning and expression of Arabidopsis fatty acid hydroperoxide lyase. Plant Cell Physiol. 40:477–481.

    PubMed  CAS  Google Scholar 

  • McConn, M., Creelman, R. A., Bell, E., Mullet, J. E., and Browse, J. 1997. Jasmonate is essential for insect defense in Arabidopsis. Plant Biol. 94:5473–5477.

    CAS  Google Scholar 

  • Mei, C., Qi, M., Sheng, G., and Yang, Y. 2006. Inducible overexpression of a rice allene oxide synthetase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant Microbe Interact. 19:1127–1137.

    Article  PubMed  CAS  Google Scholar 

  • Nott, H. M., and Latch, G. C. M. 1993. A simple method of killing endophyte in ryegrass seed, pp. 14–15, in D.E. Hume, G.C.M. Latch, and H.A. Easton (eds.). Proceedings of the 2nd International Symposium on Acremonium/Grass Interactions.AgResearch, Palmerston North.

    Google Scholar 

  • Reinbothe, S., Mollenhauer, B., and Reinbothe, C. 1994. Jips and rips—the regulation of plant gene-expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6:1197–1209.

    Article  PubMed  CAS  Google Scholar 

  • Russell, W. A., Guthrie, W. D., Klun, J. A., and Grindeland, R. 1975. Selection for resistance in maize to first-brood European corn borer by using leaf-feeding damage of the insect and chemical analysis for DIMBOA in the plant. J. Econ. Entomol. 68:31–34.

    CAS  Google Scholar 

  • Saikkonen, K., Faeth, S. H., Helander, M., and Sullivan, T. J. 1998. Fungal endophytes: a continuum of interactions with host plants. Annu. Rev. Ecol. Syst. 29:319–343.

    Article  Google Scholar 

  • Schardl, C. L., and Clay, K. 1997. Evolution of mutualistic endophytes from plant pathogens, pp. 221–238, in G. Carrol, and I.P. Tudzynski (eds.). The Mycota V: Plant Relationships, Part B Springer, Berlin.

    Google Scholar 

  • Schardl, C. L., Grossman, R. B., Nagabhyru, P., Faulkner, J. R., and Mallik, U. P. 2007. Loline alkaloids: currencies of mutualism. Phytochemistry 68:980–996.

    Article  PubMed  CAS  Google Scholar 

  • Siegel, M. R., Latch, G. C. M., Bush, L. P., Fannin, F. F., and Rowan, D. D. 1990. Fungal endophyte-infected grasses—alkaloid accumulation and aphid response. J. Chem. Ecol. 16:3301–3315.

    Article  CAS  Google Scholar 

  • Spiering, M. J., Moon, C. D., Wilkinson, H. H., and Schardl, C. L. 2005. Gene clusters for insecticidal loline alkaloids in the grass endophytic fungus Neotyphodium uncinatum. Genetics 169:1403–1414.

    Article  PubMed  CAS  Google Scholar 

  • Stebbins, G. L. 1981. Coevolution of grasses and herbivores. Annal. Missouri Bot. Gard. 68:75–86.

    Article  Google Scholar 

  • Sullivan, T. J., Rodstom, J., Vandop, J., Librizzi, J., Grahm, C., Schardl, C. L., and Bultman, T. L. 2007. Symbiont-mediated changes in Lolium arundinaceum inducible defenses: evidence from changes in gene expression and leaf composition. New Phytol. 176:673–679.

    Article  PubMed  CAS  Google Scholar 

  • SYSTAT 2004. The System for Statistics. SYSTAT, Evanston.

    Google Scholar 

  • Thaler, J. A. 1999. Induced resistance in agricultural crops: effects of jasmonic acid on herbivory and yield in tomato plants. Environ. Entomol. 28:30–37.

    CAS  Google Scholar 

  • Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annal. Botany 100:681–697.

    Article  CAS  Google Scholar 

  • Wilkinson, H. H., Siegel, M. R., Blankenship, J. D., Mallory, A. C., Bush, L. P., and Schardl, C. L. 2000. Contribution of fungal loline alkaloids to protection from aphids in grass–endophyte mutualism. Am. Phytopathol. Soc. 13:1027–1033.

    CAS  Google Scholar 

Download references

Acknowledgements

Several undergraduate students helped in counting aphids: T. Boman, A. Dreyer, D. Fraker, R. Johnson, N. Marra, B. McMahon, and J. Molenhouse. The Departments of Biology and Chemistry provided facilities. Financial support for this work was provided by NSF-URC award (0629174) to the City Colleges of Chicago and NSF-CRUI (DBI-0330840) award to TLB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Bultman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simons, L., Bultman, T.L. & Sullivan, T.J. Effects of Methyl Jasmonate and an Endophytic Fungus on Plant Resistance to Insect Herbivores. J Chem Ecol 34, 1511–1517 (2008). https://doi.org/10.1007/s10886-008-9551-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-008-9551-y

Keywords

Navigation