Skip to main content
Log in

Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

An Erratum to this article was published on 24 October 2007

Abstract

Chemical defense plays a central role for many herbivorous insects in their interactions with predators and host plants. The leaf beetle genus Oreina (Coleoptera, Chrysomelidae) includes species able to both sequester pyrrolizidine alkaloids and autogenously produce cardenolides. Sequestered compounds are clearly related to patterns of host-plant use, but variation in de novo synthesized cardenolides is less obviously linked to the environment. In this study, intraspecific variation in cardenolide composition was examined by HPLC–MS analysis in 18 populations of Oreina speciosa spanning Europe from the Massif Central to the Balkans. This revealed the defense secretion to be a complex blend of up to 42 compounds per population. There was considerable geographical variation in the total sample of 50 compounds detected, with only 14 found in all sites. The environmental and genetic influences on defense chemistry were investigated by correlation with distance matrices based on habitat factors, host-plant use, and genetics (sequence data from COI, COII, and 16s rRNA). This demonstrated an influence of both genetics and host-plant use on the overall blend of cardenolides and on the presence of some of the individual compounds. The implications of this result are discussed for the evolution of defense chemistry and for the use of cardenolide compounds as markers of the evolutionary history of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Bowers, D. 1992. The evolution of unpalatability and the cost of chemical defense in insects, pp. 216–244, in B. Roitberg and M. Isman (eds.). Insect Chemical Ecology: An Evolutionary Approach. Chapman and Hall, New York.

    Google Scholar 

  • Casgrain, P. and Legendre, P. 2001. The R package for multivariate and spatial analysis, version 4.0. Distributed by the author. University of Montreal, Montreal.

  • Dobler, S. and Rowell-Rahier, M. 1994. Production of cardenolides versus sequestration of pyrrolizidine alkaloids in larvae of Oreina species (Coleoptera, Chrysomelidae). J. Chem. Ecol. 20:555–568.

    Article  CAS  Google Scholar 

  • Dobler, S., Mardulyn, P., Pasteels, J. M., and Rowell-Rahier, M. 1996. Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina. Evolution 50:2373–2386.

    Article  Google Scholar 

  • Duffey, S. S. 1980. Sequestration of plant natural-products by insects. Annu. Rev. Entomol. 25:447–477.

    Article  CAS  Google Scholar 

  • Eggenberger, F. and Rowell-Rahier, M. 1992. Genetic component of variation in chemical defense of Oreina gloriosa (Coleoptera, Chrysomelidae). J. Chem. Ecol. 18:1375–1404.

    Article  Google Scholar 

  • Eggenberger, F. and Rowell-Rahier, M. 1993. Physiological sources of variation in chemical defense of Oreina gloriosa (Coleoptera, Chrysomelidae). J. Chem. Ecol. 19:395–410.

    Article  CAS  Google Scholar 

  • Feld, B. K., Pasteels, J. M., and Boland, W. 2001. Phaedon cochleariae and Gastrophysa viridula (Coleoptera: Chrysomelidae) produce defensive iridoid monoterpenes de novo and are able to sequester glycosidically bound terpenoid precursors. Chemoecology 11:191–198.

    Article  CAS  Google Scholar 

  • Felsenstein, J. 2004. PHYLIP (Phylogeny Inference Package) version 3.6. Distributed by the author. Department of Genomic Sciences, University of Washington, Seattle.

    Google Scholar 

  • Fordyce, J. A., Marion, Z. H., and Shapiro, A. M. 2005. Phenological variation in chemical defense of the pipevine swallowtail Battus philenor. J. Chem. Ecol. 31:2835–2846.

    Article  PubMed  CAS  Google Scholar 

  • Fordyce, J. A., Nice, C. C., and Shapiro, A. M. 2006. A novel trade-off of insect diapause affecting a sequestered chemical defense. Oecologia 149:101–106.

    Article  PubMed  Google Scholar 

  • Hartmann, T., Theuring, C., Beuerle, T., Ernst, L., Singer, M. S., and Bernays, E. A. 2004. Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J. Chem. Ecol. 30:229–254.

    Article  PubMed  CAS  Google Scholar 

  • Holloway, G. J., Dejong, P. W., and Ottenheim, M. 1993. The genetics and cost of chemical defense in the two-spot ladybird (Adalia bipunctata L.). Evolution 47:1229–1239.

    Article  Google Scholar 

  • Jaccard, P. 1900. Contribution au problème de l′immigration post-glaciaire de la flore alpin. Bull. Soc. Vaud. Sci. Nat. 36:87–130.

    Google Scholar 

  • Jolivet, P., Petitpierre, E., and Daccordi, M. 1986. Les plantes-hôtes des Chrysomelidae. Quelques nouvelles précisions et additions (Coleoptera). Nouvelle Revue Entomologique 3:342–357.

    Google Scholar 

  • Jordal, B. H. and Hewitt, G. M. 2004. The origin and radiation of Macaronesian beetles breeding in Euphorbia: The relative importance of multiple data partitions and population sampling. Syst. Biol. 53:711–734.

    Article  PubMed  Google Scholar 

  • Kopf, A., Rank, N. E., Roininen, H., Julkunen-Tiitto, R., Pasteels, J. M., and Tahvanainen, J. 1998. The evolution of host-plant use and sequestration in the leaf beetle genus Phratora (Coleoptera: Chrysomelidae). Evolution 52:517–528.

    Article  CAS  Google Scholar 

  • Lohse, G. A. and Lucht, W. H. 1994. Die Käfer Mitteleuropas, Vol. 14. Goecke und Evers Verlag, Krefeld, Germany.

    Google Scholar 

  • Malcolm, S. B., Cockrell, B. J., and Brower, L. P. 1989. Cardenolide fingerprint of monarch butterflies reared on common milkweed, Asclepias syriaca L. J. Chem. Ecol. 15:819–853.

    Article  CAS  Google Scholar 

  • Mardulyn, P., Milinkovitch, M. C., and Pasteels, J. M. 1997. Phylogenetic analyses of DNA and allozyme data suggest that Gonioctena leaf beetles (Coleoptera; Chrysomelidae) experienced convergent evolution in their history of host-plant family shifts. Syst. Biol. 46:722–747.

    Article  PubMed  CAS  Google Scholar 

  • Margraf, N., Verdon, A., Rahier, M., and Naisbit, R. E. 2007. Glacial survival and local adaptation in an alpine leaf beetle. Mol. Ecol. 16:2333–2343.

    Article  PubMed  CAS  Google Scholar 

  • Moranz, R. and Brower, L. P. 1998. Geographic and temporal variation of cardenolide-based chemical defenses of queen butterfly (Danaus gilippus) in northern Florida. J. Chem. Ecol. 24:905–932.

    Article  CAS  Google Scholar 

  • Nishida, R. 2002. Sequestration of defensive substances from plants by Lepidoptera. Annu. Rev. Entomol. 47:57–92.

    Article  PubMed  CAS  Google Scholar 

  • Nylander, J. A. A., Ronquist, F., Huelsenbeck, J. P., and Nieves-Aldrey, J. L. 2004. Bayesian phylogenetic analysis of combined data. Syst. Biol. 53:47–67.

    Article  PubMed  Google Scholar 

  • Pasteels, J. M. and Daloze, D. 1977. Cardiac glycosides in the defensive secretion of chrysomelid beetles: evidence for their production. Science 197:70–72.

    Article  PubMed  CAS  Google Scholar 

  • Pasteels, J. M., Eggenberger, F., Rowell-Rahier, M., Ehmke, A., and Hartmann, T. 1992. Chemical defense in chrysomelid leaf beetles. Storage of host-derived pyrrolizidine alkaloids versus de novo synthesized cardenolides. Naturwissenschaften 79:521–523.

    Article  CAS  Google Scholar 

  • Perrier, X., Flori, A., and Bonnot, F. 2003. Data analysis methods, pp. 43–76, in P. Hamon, M. Seguin, X. Perrier and J. C. Glaszmann (eds.). Genetic Diversity of Cultivated Tropical Plants. Science Publishers, Enfield, New Hampshire.

    Google Scholar 

  • Posada, D. and Crandall, K. A. 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818.

    Article  PubMed  CAS  Google Scholar 

  • Posada, D. and Buckley, T. R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Syst. Biol. 53:793–808.

    Article  PubMed  Google Scholar 

  • Ronquist, F. and Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.

    Article  PubMed  CAS  Google Scholar 

  • Rowell-Rahier, M. and Pasteels, J. M. 1994. A comparison between allozyme data and phenotypic distances from defensive secretion in Oreina leaf beetles (Chrysomelinae). J. Evol. Biol. 7:489–500.

    Article  Google Scholar 

  • Rowell-Rahier, M., Witte, L., Ehmke, A., Hartmann, T., and Pasteels, J. M. 1991. Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretion. Chemoecology 2:41–48.

    Article  CAS  Google Scholar 

  • Ruxton, G. D., Sherratt, T. N., and Speed, M. P. 2004. Avoiding Attack: The Evolutionary Ecology of Camouflage, Warning Signals and Mimicry. Oxford University Press, Oxford.

    Google Scholar 

  • Sattath, S. and Tversky, A. 1977. Additive similarity trees. Psychometrika 42:319–345

    Article  Google Scholar 

  • Schmitt, T., Hewitt, G. M., and Müller, P. 2006. Disjunct distributions during glacial and interglacial periods in mountain butterflies: Erebia epiphron as an example. J. Evol. Biol. 19:108–113.

    Article  PubMed  CAS  Google Scholar 

  • Schönswetter P., Stehlik, I., Holderegger, R., and Tribsch, A. 2005. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol. Ecol. 14:3547–3555.

    Article  PubMed  Google Scholar 

  • Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene-sequences and a compilation of conserved polymerase chain-reaction primers. Ann. Entomol. Soc. Am. 87:651–701.

    CAS  Google Scholar 

  • Skelhorn, J. and Rowe, C. 2005. Tasting the difference: do multiple defence chemicals interact in Müllerian mimicry? Proc. R. Soc. Lond. B Biol. Sci. 272:339–345.

    Article  Google Scholar 

  • Soe, A. R. B., Bartram, S., Gatto, N., and Boland, W. 2004. Are iridoids in leaf beetle larvae synthesized de novo or derived from plant precursors? A methodological approach. Isot. Environ. Health Stud. 40:175–180.

    Article  CAS  Google Scholar 

  • Spencer, K. C. 1988. Chemical Mediation of Coevolution. Academic, San Diego, CA, USA.

    Google Scholar 

  • Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The clustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882.

    Article  Google Scholar 

  • Trigo, J. R. 2000. The chemistry of antipredator defense by secondary compounds in neotropical Lepidoptera: facts, perspectives and caveats. J. Braz. Chem. Soc. 11:551–561.

    Article  CAS  Google Scholar 

  • Van Oycke, S., Braekman, J. C., Daloze, D., and Pasteels, J. M. 1987. Cardenolide biosynthesis in chrysomelid beetles. Experientia 43:460–462.

    Article  Google Scholar 

  • Verdon, A., Margraf, N., Davison, A. C., Rahier, M., and Naisbit, R. E. 2007. Conserved oviposition preferences in alpine leaf beetle populations despite host shifts and isolation. Ecol. Entomol. 32:62–69.

    Article  Google Scholar 

  • Wahlberg, N. 2001. The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae). Evolution 55:522–537.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Matthias Borer for help during fieldwork, Eliane Abou-Mansour for help with chemical analysis, and the National Centre of Competence in Research (NCCR) Plant Survival for funding chemical and genetic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Triponez.

Additional information

Triponez and Naisbit contributed equally to this work and are considered joint first authors.

An erratum to this article can be found at http://dx.doi.org/10.1007/s10886-007-9381-3

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triponez, Y., Naisbit, R.E., Jean-Denis, J.B. et al. Genetic and Environmental Sources of Variation in the Autogenous Chemical Defense of a Leaf Beetle. J Chem Ecol 33, 2011–2024 (2007). https://doi.org/10.1007/s10886-007-9351-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9351-9

Keywords

Navigation