Skip to main content
Log in

Temperature and Spatiotemporal Variability of Salicylihalamide A in the Sponge Haliclona sp.

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The production of salicylihalamide A by the marine sponge Haliclona sp. was investigated. Samples of the two morphologies (green and brown) were collected from four locations covering approximately 1,200 km of coastline. Temporal variation between winter and summer was also examined at Bremer Bay. Chemical profiling by using liquid chromatography coupled with ultra violet detection and mass spectrometry showed that salicylihalamide A was produced only by the green morphology. Salicylihalamide A concentration was significantly correlated to water temperature but not to the size or depth of the sponge. Salicylihalamide A concentration was found to differ significantly among locations (Bremer Bay 13.5 μg g−1, Hamelin Bay 11 μg g−1, Rottnest Island 9.9 μg g−1, and Jurien Bay 8.5 μg g−1) partially accounted for by the influence of water temperature. A difference between seasons was also observed in Bremer Bay (summer concentration of 13.5 μg g−1 vs. winter concentration of 8.2 μg g−1). Environmental and physiological factors appear to be important in the production of salicylihalamide A by the green morphology. Additionally, the brown morphology does not produce salicylihalamide A, thus adding to the evidence that this morphology may be a different species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdo, D. A., Battershill, C. N., and Harvey, E. S. 2006a. Manipulation of environmental variables and the effect on the growth of Haliclona sp.: implications for open water aquaculture. Mar. Biol. Res. 2:326–332.

    Article  Google Scholar 

  • Abdo, D. A., Seager, J. W., Harvey, E. S., Mcdonald, J. I., Kendrick, G. A., and SHortis, M. R. 2006b. Efficiently measuring complex sessile epibenthic organisms using a novel photogrammetric technique. J. Exp. Mar. Biol. Ecol. 339:121–133.

    Article  Google Scholar 

  • Becerro, M. A., Turon, X., and Uriz, M. J. 1995. Natural variation of toxicity in encrusting sponge Crambe crambe (Schmidt) in relation to size and environment. J. Chem. Ecol. 21:1931–1946.

    Article  CAS  Google Scholar 

  • Boyd, M. R., Farina, C., Belfiore, P., Gagliardi, S., Kim, J. W., Hayakawa, Y., Beutler, J. A., Mckee, T. C., Bowman, B. J., and Bowman, E. J. 2001. Discovery of a novel antitumour benolactone enamide class that selectively inhibits mammalian vacuolar-type (H+)-ATPases. J. Pharmacol. Exp. Ther. 297:114–120.

    PubMed  CAS  Google Scholar 

  • Coll, J. C. 1992. The chemistry and chemical ecology of octocorals (Coelenterata, Anthozoa, Octocorallia). Chem. Rev. 92:895–899.

    Article  Google Scholar 

  • Creswell, G. R. and Golding, T. J. 1980. Observations of a south flowing current in the southeastern Indian Ocean. Deep-Sea Res. 27A:449–466.

    Article  Google Scholar 

  • Duckworth, A. R. and Battershill, C. N. 2001. Population dynamics and chemical ecology of New Zealand Demospongiae Latrunculia sp. nov. and Polymastia croceus (Poecilosclerida: Latrunculiidae: Polymastiidae). N. Z. J. Mar. Freshw. Res. 35:935–949.

    Article  Google Scholar 

  • Duckworth, A. and Battershill, C. 2003. Sponge aquaculture for the production of biologically active metabolites: the influence of farming protocols and environment. Aquaculture 221:1–4.

    Article  Google Scholar 

  • Duckworth, A. R., Battershill, C. N., and Schiel, D. R. 2004. Effects of depth and water flow on growth, survival and bioactivity of two temperatex sponges cultured in different seasons. Aquaculture 242:237–250.

    Article  Google Scholar 

  • Erickson, K. L., Beutler, J. A., Cardellina, J. H., and Boyd, M. R. 1997. Salicylihalamides A and B, novel cytotoxic macrolides from the marine sponge Haliclona sp. J. Org. Chem. 62:8188–8192.

    Article  PubMed  CAS  Google Scholar 

  • Harvell, D. C., Fenical, W., Roussis, V., Ruesink, J. L., Griggs, C. C., and Greene, C. H. 1993. Local and geographic variation in the defensive chemistry of a West Indian gorgonian coral (Briareum asbestinum). Mar. Ecol. Prog. Ser. 93:165–173.

    CAS  Google Scholar 

  • Kelman, D., Benayahu, Y., and Kashman, Y. 2000. Variation in the secondary metabolite concentrations in yellow and grey morphs of the red sea soft coral Parerythropodium fulvum fulvum: possible ecological implications. J. Chem. Ecol. 26:1123–1133.

    Article  CAS  Google Scholar 

  • Lopez-Legentil, S., Dieckmann, R., Bontemps-Subielos, N., Turon, X., and Banaigs, B. 2005. Qualitative variation of alkaloids in color morphs of Cystodytes (Ascidiacea). Biochem. Syst. Ecol. 33:1107–1119.

    Article  CAS  Google Scholar 

  • Maida, M., Carroll, A. R., and Coll, J. C. 1993. Variability of terpene content in the soft coral Sinularia flexibilis (Coelentrata: Octocorallia), and its ecological implications. J. Chem. Ecol. 19:2285–2296.

    Article  CAS  Google Scholar 

  • Marti, R., Uriz, M. J., and Turon, X. 2005. Spatial and temporal variation of natural toxicity in cnidarians, bryozoans and tunicates in Mediterranean caves. Sci. Mar. 69:485–492.

    CAS  Google Scholar 

  • McClintock, J. B. and Baker, B. J. (Editors). 2001. Marine Chemical Ecology. CRC Marine Science Series. CRC Press, Boca Raton, FL, p. 610.

  • Mendola, D. 2003. Aquaculture of three phyla of marine invertebrates to yield bioactive metabolites: process developments and economics. Biomol. Eng. 20:441–458.

    Article  PubMed  CAS  Google Scholar 

  • Munro, M. H. G., Blunt, J. W., Dumdei, E. J., Hickford, S. J. H., Lill, R. E., Li, S., Battershill, C. N., and Duckworth, A. R. 1999. The discovery and development of marine compounds with pharmaceutical potential. J. Biotechnol. 70:15–25.

    Article  PubMed  CAS  Google Scholar 

  • Newman, D. J. and Cragg, G. M. 2004. Advanced preclinical and clinical trials of natural products and related compounds from marine sources. Curr. Med. Chem. 11:1693–1713.

    PubMed  CAS  Google Scholar 

  • O’neal, W. and Pawlik, J. R. 2002. A reappraisal of the chemical and physical defenses of Caribbean gorgonian corals against predatory fishes. Mar. Ecol. Prog. Ser. 240:117–126.

    CAS  Google Scholar 

  • Page, M., West, L., Northcote, P., Battershill, C., and Kelly, M. 2005. Spatial and temporal variability of cytotoxic metabolites in populations of the New Zealand sponge Mycale hentscheli. J. Chem. Ecol. 31:1161–1174.

    Article  PubMed  CAS  Google Scholar 

  • Paul, V. J., Puglisi, M. P., and Ritson-Williams, R. 2006. Marine chemical ecology. Nat. Prod. Rep. 23:153–180.

    Article  PubMed  CAS  Google Scholar 

  • Sipkema, D., Osinga, R., Schatton, W., Mendola, D., Tramper, J., and Wijffels, R. H. 2005. Large-scale production of pharmaceuticals by marine sponges: sea, cell, or synthesis? Biotechnol. Bioeng. 90:201–222.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, J. E., Murphy, P. T., Bergquist, P. R., and Evans, E. A. 1987. Environmentally induced variation in diterpene composition of the marine sponge Rhopaloeides odorabile. Biochem. Syst. Ecol. 15:595–606.

    Article  CAS  Google Scholar 

  • Turon, X., Becerro, M. A., and Uriz, M. J. 1996. Seasonal patterns of toxicity in benthic invertebrates: the encrusting sponge Crambe crambe (Poeciloscledida). Oikos 75:33–40.

    Article  Google Scholar 

  • Wu, Y., Esser, L., and De Brabander, J. K. 2000. Revision of the absolute configuration of Salicylihalamide A through asymmetric total synthesis. Angew. Chem. Int. Ed. 39:4308–4310.

    Article  CAS  Google Scholar 

  • Zar, J. H. 1999. Biostatistical Analysis. Prentice Hall, New Jersey.

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to Linda Heap, Caine Delacy, Dave Gull, and Craig Lebens (Bremer Bay Diving Services) for help during field collections. We also thank the anonymous reviewers for improving this manuscript, and Drs. G. Kendrick, J. McDonald, J. Fromont, and S. Whalan for discussion and comments on the research. Funding for this work was provided by a University of Western Australia (UWA) Small Grant to E. H. and C. B. and UWA University Postgraduate Award to D. A. This research was carried out under Fisheries WA Regulation 179 permit and Fisheries WA who are thanked for assistance with permitting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Abdo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdo, D.A., Motti, C.A., Battershill, C.N. et al. Temperature and Spatiotemporal Variability of Salicylihalamide A in the Sponge Haliclona sp.. J Chem Ecol 33, 1635–1645 (2007). https://doi.org/10.1007/s10886-007-9326-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-007-9326-x

Keywords

Navigation