Skip to main content
Log in

Herbivores, Vascular Pathways, and Systemic Induction: Facts and Artifacts

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Over the past 10 years there has been tremendous growth in our understanding of molecular, chemical, and morphological induction of traits involved in the resistance of plants to herbivores. Although it is well established that the patterns of induction can be constrained by a plant's vascular architecture, studies often fail to account for these constraints. Failure to do so has the potential to severely underestimate both the patterns and extent of induction. Here I review (1) the evidence for vascular control of induced responses, (2) how interspecific variation in phyllotaxy influences spatial patterning of induction, (3) the factors, phloem transport and volatile production, that may break down vascular constraints and lead to more widespread induction, and (4) the experimental approaches that could be compromised when vascular architecture is not considered. I show that vascular constraints in systemic induction are commonplace, but vary among species. I suggest that when induction is more widespread than expected from patterns of phyllotaxy, differences in vascular connectivity and volatile production may be responsible. I argue that advances in the mechanisms of systemic induction, cross-talk between different signal transduction pathways, specificity of induction, costs and benefits of systemic induction, and the effects of induced changes on herbivores and their natural enemies require that experiments be designed to examine and/or control for vascular constraints in systemic induction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. A. Agrawal (2000) ArticleTitleSpecificity of induced resistance in wild radish: causes and consequences for two specialist and two generalist caterpillars Oikos 89 493–500 Occurrence Handle10.1034/j.1600-0706.2000.890308.x

    Article  Google Scholar 

  • A. A. Agrawal R. Karban (1999) Why induced defenses may be favored over constitutive strategies in plants R. Tollrian C. D. Harvell (Eds) The Ecology and Evolution of Inducible Defenses Princeton University Press Princeton 45–61

    Google Scholar 

  • A. A. Agrawal P. M. Gorski D. W. Tallamy (1999) ArticleTitlePolymorphism in plant defense against herbivory: Constitutive and induced resistance in Cucumis sativus J. Chem. Ecol. 25 2285–2304 Occurrence Handle10.1023/A:1020821823794

    Article  Google Scholar 

  • T. M. Arnold J. C. Schultz (2002) ArticleTitleInduced sink strength as a prerequisite for induced tannin biosynthesis in developing leaves of Populus Oecologia 130 585–593 Occurrence Handle10.1007/s00442-001-0839-7

    Article  Google Scholar 

  • T. M. Arnold H. Appel V. Patel E. Stocum A. Kavalier J. Schultz (2004) ArticleTitleCarbohydrate translocation determines the phenolic content of Populus foliage: a test of the sink–source model of plant defense New Phytol. 164 157–164 Occurrence Handle10.1111/j.1469-8137.2004.01157.x

    Article  Google Scholar 

  • I. T. Baldwin (1988) ArticleTitleThe alkaloidal responses of wild tobacco to real and simulated herbivory Oecologia 77 378–381 Occurrence Handle10.1007/BF00378046

    Article  Google Scholar 

  • I. T. Baldwin C. L. Sims S. E. Kean (1990) ArticleTitleThe reproductive consequences associated with inducible alkaloidal responses in wild tobacco Ecology 71 252–262

    Google Scholar 

  • I. T. Baldwin D. Gorham E. A. Schmelz C. A. Lewandowski G. Y. Lynds (1998) ArticleTitleAllocation of nitrogen to an inducible defense and seed production in Nicotiana attenuata Oecologia 115 541–552 Occurrence Handle10.1007/s004420050552

    Article  Google Scholar 

  • D. Cipollini (2002) ArticleTitleDoes competition magnify the fitness costs of induced responses in Arabidopsis thaliana? A manipulative approach Oecologia 131 514–520 Occurrence Handle10.1007/s00442-002-0909-5

    Article  Google Scholar 

  • D. F. Cipollini A. M. Redman (1999) ArticleTitleAge-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato J. Chem. Ecol. 25 271–281 Occurrence Handle10.1023/A:1020842712349

    Article  Google Scholar 

  • C. P. Constabel L. Yip J. J. Patton M. E. Christopher (2000) ArticleTitlePolyphenol oxidase from hybrid poplar. Cloning and expression in response to wounding and herbivory Plant Physiol. 124 285–295 Occurrence Handle10.1104/pp.124.1.285 Occurrence Handle10982443

    Article  PubMed  Google Scholar 

  • M. A. Davis M. P. Gordon B. A. Smit (1991) ArticleTitleAssimilate movement dictates remote sites ofwound-induced gene expression in poplar leaves Proc. Natl. Acad. Sci. USA 88 2393–2396 Occurrence Handle11607168

    PubMed  Google Scholar 

  • C. M. Moraes ParticleDe M. C. Mescher J. H. Tumlinson (2001) ArticleTitleCaterpillar-induced nocturnal plant volatiles repel conspecific females Nature 419 531–577

    Google Scholar 

  • R. F. Denno M. S. McClure (Eds) (1983) Variable Plants and Herbivores in Natural and Managed Systems Academic Press New York

    Google Scholar 

  • M. Dicke A. A. Agrawal J. Bruin (2003) ArticleTitlePlants talk, but are they deaf? Trends Plant Sci. 8 403–405 Occurrence Handle10.1016/S1360-1385(03)00183-3 Occurrence Handle13678903

    Article  PubMed  Google Scholar 

  • R. Dickson (1991) Carbon fixation and distribution in young Populus trees A. S. Raghavendra (Eds) Physiology of Trees John Wiley and Sons, Inc. New York 51–85

    Google Scholar 

  • R. E. Dickson J. G. Isebrands (1991) Leaves as regulators of stress response H. A. Mooney W. E. Winner E. J. Pell (Eds) Response of Plants to Multiple Stresses Academic Press Inc. San Diego 3–34

    Google Scholar 

  • E. E. Farmer (2001) ArticleTitleSurface-to-air signals Nature 411 854–856

    Google Scholar 

  • D. B. Fisher (2000) Long-distance transport B. B. Buchanan W. Gruissem R. L. Jones (Eds) Biochemistry and Molecular Biology of Plants American Society of Plant Physiologists Rockville, MD 730–784

    Google Scholar 

  • E. Haukioja (1990) ArticleTitleInduction of defenses in trees Annu. Rev. Entomol. 36 25–42 Occurrence Handle10.1146/annurev.en.36.010191.000325

    Article  Google Scholar 

  • M. Heil I. T. Baldwin (2002) ArticleTitleFitness costs of induced resistance: Emerging experimental support for a slippery concept Trends Plant Sci. 7 61–67 Occurrence Handle10.1016/S1360-1385(01)02186-0 Occurrence Handle11832276

    Article  PubMed  Google Scholar 

  • Y. Ishiwatari T. Fujiwara K. C. McFarland K. Nemoto H. Hayashi M. Chino W. J. Lucas (1998) ArticleTitleRice phloem thioredoxin h has the capacity to mediate its own cell-to cell transport through plasmodesmata Planta 205 12–22 Occurrence Handle10.1007/s004250050291 Occurrence Handle9599802

    Article  PubMed  Google Scholar 

  • C. G. Jones R. F. Hopper J. S. Coleman V. A. Krischik (1993) ArticleTitleControl of systematically induced herbivore resistance by plant vascular architecture Oecologia 93 452–456 Occurrence Handle10.1007/BF00317892

    Article  Google Scholar 

  • R. Karban (1986) ArticleTitleInduced resistance against spider mites in cotton: Field verification Entomol. Exp. Appl. 42 239–242 Occurrence Handle10.1007/BF00629310

    Article  Google Scholar 

  • R. Karban (1987) ArticleTitleEnvironmental conditions affecting the strength of induced resistance against mites in cotton Oecologia 73 414–419 Occurrence Handle10.1007/BF00385258

    Article  Google Scholar 

  • R. Karban I. T. Baldwin (1997) Induced Responses to Herbivory University of Chicago Press Chicago

    Google Scholar 

  • R. Karban J. H. Myers (1989) ArticleTitleInduced plant responses to herbivory Annu. Rev. Ecol. Syst. 20 331–348 Occurrence Handle10.1146/annurev.es.20.110189.001555

    Article  Google Scholar 

  • R. Karban I. T. Baldwin K. J. Baxter G. Laue G. W. Felton (1997) ArticleTitleCommunication between plants: induced resistance in wild tobacco plants following clipping of neighboring sagebrush Oecologia 125 66–71

    Google Scholar 

  • A. Kessler I. T. Baldwin (2001) ArticleTitleDefensive function of herbivore-induced plant volatile emissions in nature Science 291 2141–2144 Occurrence Handle10.1126/science.291.5511.2141 Occurrence Handle11251117

    Article  PubMed  Google Scholar 

  • I. W. Kiefer A. J. Slusarenko (2003) ArticleTitleThe pattern if systemic acquired resistance induction within the Arabidopsis rosette in relation to the pattern of translocation Plant Physiol. 132 840–847 Occurrence Handle10.1104/pp.103.021709 Occurrence Handle12805614

    Article  PubMed  Google Scholar 

  • P. R. Larson (1977) ArticleTitlePhyllotactic transitions in the vascular system of Populus deltoides Bartr. as determined by 14C labeling Planta 134 241–249 Occurrence Handle10.1007/BF00384188

    Article  Google Scholar 

  • M. Lerdau (2002) ArticleTitlePlants talk—but can they listen? Science 298 361 Occurrence Handle10.1126/science.298.5592.361b

    Article  Google Scholar 

  • W. J. Lucas (1997) ArticleTitleApplication of microinjection techniques to plant nutrition Plant Soil 196 175–189 Occurrence Handle10.1023/A:1004289605333

    Article  Google Scholar 

  • M. Malone J.-J. Alarcon (1995) ArticleTitleOnly xylem-borne factors can account for systemic wound signaling in the tomato plant Planta 196 740–746 Occurrence Handle10.1007/BF01106769

    Article  Google Scholar 

  • C. Marshall (1996) ArticleTitleSectoriality and physiological organisation in herbaceous plants: an overview Vegetatio 127 9–16 Occurrence Handle10.1007/BF00054842

    Article  Google Scholar 

  • P. E. H. Minchin M. R. Thorpe (1984) ArticleTitleApoplastic phloem unloading in the stem of bean Phaseolis-vulgaris J. Exp. Bot. 35 538–550

    Google Scholar 

  • P. E. H. Minchin M. R. Thorpe (1987) ArticleTitleMeasurement of unloading and reloading of photo-assimilate within the stem of bean J. Exp. Bot. 38 211–220

    Google Scholar 

  • Moore, R., Clark, W. D., and Vodopich, D. S. 1998. pp. 314–315, in Botany, 2nd edn. WCB/McGraw-Hill, Dubuque, IA.

  • P. J. Moran G. A. Thompson (2001) ArticleTitleMolecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways Plant Physiol. 125 1074–1085 Occurrence Handle10.1104/pp.125.2.1074 Occurrence Handle11161062

    Article  PubMed  Google Scholar 

  • B. J. Murray C. Mauk L. D. NoodÉn (1982) ArticleTitleRestricted vascular pipelines (and orthostichies) in plants What's New Plant Physiol. 13 33–36

    Google Scholar 

  • P. Mutikainen M. Walls J. Ovaska (1996) ArticleTitleHerbivore-induced resistance in Betula pendula: the role of plant vascular architecture Oecologia 108 723–727 Occurrence Handle10.1007/BF00329048

    Article  Google Scholar 

  • C. M. Orians C. G. Jones (2001) ArticleTitlePlants as resource mosaics: a functional model for predicting patterns of within-plant resource heterogeneity to consumers based on vascular architecture and local environmental variability Oikos 94 493–504 Occurrence Handle10.1034/j.1600-0706.2001.940311.x

    Article  Google Scholar 

  • C. M. Orians J. Pomerleau R. Ricco (2000) ArticleTitleVascular architecture generates fine scale variation in the systemic induction of proteinase inhibitors in tomato J. Chem. Ecol. 26 471–485 Occurrence Handle10.1023/A:1005469724427

    Article  Google Scholar 

  • C. M. Orians B. Babst A. E. Zanne (2005) Vascular constraints and long-distance transport in dicots N. M. Holbrook M. Zwieniecki (Eds) Vascular Transport in Plants Elsevier/AP co-imprint Oxford

    Google Scholar 

  • J. S. Pate W. Dieter Jeschke (1995) Role of stems in transport, storage, and circulation of ions and metabolites by the whole plant B. L. Gartner (Eds) Plant Stems: Physiology and Functional Morphology Academic Press San Diego 177–204

    Google Scholar 

  • K. A. Preston (1998) ArticleTitleThe effects of developmental stage and source leaf position on integration and sectorial patterns of carbohydrate movement in an annual plant, Perilla frutescens (Lamiaceae) Am. J. Bot. 85 1695–1703

    Google Scholar 

  • A. M. Redman D. Cipollini J. C. Schultz (2001) ArticleTitleFitness costs of jasmonic acid-induced defense in tomato, Lycopersicon esculentum Oecologia 126 380–385 Occurrence Handle10.1007/s004420000522

    Article  Google Scholar 

  • J. D. Rhodes J. F. Thain D. C. Wildon (1999) ArticleTitleEvidence for physically distinct systemic signaling pathways in the wounded tomato plant Ann. Bot. 84 109–116 Occurrence Handle10.1006/anbo.1999.0900

    Article  Google Scholar 

  • R. Ruiz-Medrano B. Xoconostle-Cazares W. J. Lucas (1999) ArticleTitlePhloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants Development 126 4405–4419 Occurrence Handle10498677

    PubMed  Google Scholar 

  • R. Ruiz-Medrano B. Xoconostle-Cazares F. Kragler (2004) ArticleTitleThe plasmodesmatal transport pathway for homeotic proteins, silencing signals and viruses Curr. Opin. Plant Biol. 7 641–650 Occurrence Handle10.1016/j.pbi.2004.09.012 Occurrence Handle15491912

    Article  PubMed  Google Scholar 

  • T. Sachs A. Novoplansky D. Cohen (1993) ArticleTitlePlants as competing population of redundant organs Plant Cell Environ. 16 765–770

    Google Scholar 

  • U. Schittko I. T. Baldwin (2003) ArticleTitleConstraints to herbivore-induced systemic responses: bidirectional signaling along orthostichies in Nicotiana attenuata J. Chem. Ecol. 29 763–770 Occurrence Handle10.1023/A:1022833022672 Occurrence Handle12757332

    Article  PubMed  Google Scholar 

  • U. Schittko C. A. Preston I. T. Baldwin (2000) ArticleTitleEating the evidence? Manduca sexta larvae cannot disrupt specific jasmonate induction in Nicotiana attenuata by rapid consumption Planta 21 343–346

    Google Scholar 

  • M. M. Shea M. A. Watson (1989) ArticleTitlePatterns of leaf and flower removal: their effect on fruit growth in Chamaenerion angustifolium (fireweed) Am. J. Bot. 76 884–890

    Google Scholar 

  • V. Shulaev J. Leon I. Raskin (1995) ArticleTitleIs salicylic acid a translocated signal of systemic acquired resistance in tobacco? Plant Cell 7 1691–1701 Occurrence Handle10.1105/tpc.7.10.1691 Occurrence Handle12242358

    Article  PubMed  Google Scholar 

  • M. J. Stout K. V. Workman S. S. Duffey (1996a) ArticleTitleIdentity, spatial distribution, andvariability of induced chemical responses in tomato plants Entomol. Exp. Appl. 79 255–271 Occurrence Handle10.1007/BF00186285

    Article  Google Scholar 

  • M. J. Stout K. V. Workman J. S. Workman S. S. Duffey (1996b) ArticleTitleTemporal and ontogenetic aspects of protein induction in foliage of the tomato, Lycopersicon esculentum Biochem. Syst. Ecol. 24 1–16 Occurrence Handle10.1016/0305-1978(95)00101-8

    Article  Google Scholar 

  • J. W. StratmaNn (2003) ArticleTitleLong-distance run in the wound response—jasmonic acid is pulling ahead Trends Plant Sci. 8 247–250 Occurrence Handle10.1016/S1360-1385(03)00106-7 Occurrence Handle12818656

    Article  PubMed  Google Scholar 

  • J. S. Thaler (1999) ArticleTitleInduced resistance in agricultural crops: Effects of jasmonic acid on herbivory and yield in tomato plants Environ. Entomol. 28 30–37

    Google Scholar 

  • J. S. Thaler (1999) ArticleTitleJasmonate-inducible plant defences cause increased parasitism of herbivores Nature 399 686–688 Occurrence Handle10.1038/21420

    Article  Google Scholar 

  • J. S. Thaler A. L. Fidantsef S. S. Duffey R. M. Bostock (1999) ArticleTitleTrade-offs in plant defense against pathogens and herbivores: A field demonstration of chemical elicitors of induced resistance J. Chem. Ecol. 25 1597–1609 Occurrence Handle10.1023/A:1020840900595

    Article  Google Scholar 

  • J. S. Thaler R. Karban D. E. Ullman K. Boege R. M. Bostock (2002) ArticleTitleCross-talk between jasmonate and salicylate plant defense pathways: effects on several plant parasites Oecologia 131 235–277

    Google Scholar 

  • B. P. H. J. Thomma K. Eggermont I. A. M. A. Penninckx B. Mauch-Mani R. Vogelsang B. P. A. Cammue W. F. Broekaert (1998) ArticleTitleSeparate jasmonate-dependent and salicylate-dependent defense–response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens Proc. Natl. Acad. Sci. USA 95 15107–15111 Occurrence Handle10.1073/pnas.95.25.15107 Occurrence Handle9844023

    Article  PubMed  Google Scholar 

  • M. Thorpe P. Minchin N. Gould J. McQueen (2005) The stem apoplast: A potential communication channel in plant growth regulation N. M. Holbrook M. Zwieniecki (Eds) Vascular Transport in Plants Elsevier/AP co-imprint Oxford

    Google Scholar 

  • M. B. Traw T. E. Dawson (2002) ArticleTitleDifferential induction of trichomes by three herbivores of black mustard Oecologia 131 526–532 Occurrence Handle10.1007/s00442-002-0924-6

    Article  Google Scholar 

  • A. J. E. Bel Particlevan K. Ehlers M. Knoblauch (2002) ArticleTitleSieve elements caught in the act Trends Plant Sci. 7 126–132 Occurrence Handle10.1016/S1360-1385(01)02225-7 Occurrence Handle11906836

    Article  PubMed  Google Scholar 

  • A. J. E. Bel Particlevan (2003) ArticleTitleTransport phloem: Low profile, high impact Plant Physiol. 131 1509–1510 Occurrence Handle12692310

    PubMed  Google Scholar 

  • N. M. Dam Particlevan M. Horn M. Mares I. T. Baldwin (2001) ArticleTitleOntogeny constrains systemic protease inhibitor response in Nicotiana attenuata J. Chem. Ecol. 27 547–568 Occurrence Handle10.1023/A:1010341022761 Occurrence Handle11441445

    Article  PubMed  Google Scholar 

  • R. Poecke Particlevan M. P. Posthumus M. A. Dicke (2001) ArticleTitleHerbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rebucula: chemical, behavioral, and gene-expression analysis J. Chem. Ecol. 27 1911–1928 Occurrence Handle10.1023/A:1012213116515 Occurrence Handle11710601

    Article  PubMed  Google Scholar 

  • D. V. Viswanathan J. S. Thaler (2004) ArticleTitlePlant vascular architecture and within-plant spatial patterns in resource quality following herbivory J. Chem. Ecol. 30 531–543 Occurrence Handle10.1023/B:JOEC.0000018627.26420.e0 Occurrence Handle15139306

    Article  PubMed  Google Scholar 

  • C. Voelckel I. T. Baldwin (2004) ArticleTitleGeneralist and specialist lepidopteran larvae elicit different transcriptional responses in Nicotiana attenuata, which correlate with larval FAC profiles Ecol. Lett. 7 70–775 Occurrence Handle10.1111/j.1461-0248.2004.00633.x

    Article  Google Scholar 

  • L. L. Walling (2000) ArticleTitleThe myriad plant responses to herbivores J. Plant Growth Regul. 19 195–216 Occurrence Handle11038228

    PubMed  Google Scholar 

  • M. A. Watson (1986) ArticleTitleIntegrated physiological units in plants TREE 1 119–123

    Google Scholar 

  • M. A. Watson B. B. Casper (1984) ArticleTitleMorphogenetic constraints on patterns of carbon distribution in plants Annu. Rev. Ecol. Syst. 15 233–258 Occurrence Handle10.1146/annurev.es.15.110184.001313

    Article  Google Scholar 

  • J. A. Zavala I. T. Baldwin (2004) ArticleTitleFitness benefits of trypsin proteinase inhibitor expression in Nicotiana attenuata are greater than their costs when plants are attacked BMC Ecol. 4 1–15 Occurrence Handle10.1186/1472-6785-4-11 Occurrence Handle15005805

    Article  PubMed  Google Scholar 

  • J. A. Zavala A. Patankar K. Gase I. T. Baldwin (2004) ArticleTitleConstitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuata Proc. Natl. Acad. Sci. USA 101 1607–1612 Occurrence Handle10.1073/pnas.0305096101 Occurrence Handle14757829

    Article  PubMed  Google Scholar 

  • Z. P. Zhang I. T. Baldwin (1997) ArticleTitleTransport of [2-C-14]jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jasmonic acid pools in Nicotiana sylvestris Planta 203 436–441 Occurrence Handle10.1007/s004250050211

    Article  Google Scholar 

  • M. A. Zwieniecki C. M. Orians P. J. Melcher N. M. Holbrook (2003) ArticleTitleIonic control of lateral exchange of water between vascular bundles in tomato J. Exp. Bot. 54 1399–1406 Occurrence Handle10.1093/jxb/erg144 Occurrence Handle12709486

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Danush Viswanathan, Anurag Agrawal, Michael Thorpe, and two anonymous reviewers for comments on an early version of this manuscript and the National Science Foundation (DEB 9981568) and the Andrew Mellon Foundation for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Orians.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orians, C. Herbivores, Vascular Pathways, and Systemic Induction: Facts and Artifacts. J Chem Ecol 31, 2231–2242 (2005). https://doi.org/10.1007/s10886-005-7099-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10886-005-7099-7

Key Words

Navigation