Skip to main content
Log in

Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels

  • Published:
Journal of Dynamics and Differential Equations Aims and scope Submit manuscript

Abstract

We study global asymptotic behavior of Poisson–Nernst–Planck (PNP) systems for flow of two ion species through a narrow tubular-like membrane channel. As the radius of the cross-section of the three-dimensional tubular-like membrane channel approaches zero, a one-dimensional limiting PNP system is derived. This one-dimensional limiting system differs from previously studied one-dimensional PNP systems in that it encodes the defining geometry of the three-dimensional membrane channel. To justify this limiting process, we show that the global attractors of the three-dimensional PNP systems are upper semi-continuous as the radius of the channel tends to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barcilon V., Chen D.-P., Eisenberg R.S.: Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52, 1405–1425 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barcilon V., Chen D.-P., Eisenberg R.S., Jerome J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biler P., Dolbeault J.: Long time behavior of solutions to Nernst-Planck and Debye-Hückel drift-diffusion systems. Ann. Henri Poincaré 1, 461–472 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Biler P., Hebisch W., Nadzieja T.: The Debye system: existence and large time behavior of solutions. Nonlinear Anal. TMA 23, 1189–1209 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eisenberg B., Liu W.: Poisson–Nernst–Planck systems for ion channels with permanent charges. SIAM J. Math. Anal. 38, 1932–1966 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gajewski H., Gröger K.: On the basic equations for carrier transport in semiconductors. J. Math. Anal. Appl. 113, 12–35 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gajewski H., Gröger K.: Semiconductor equations for variable mobilities based on Boltzmann statistics or Fermi-Dirac statistics. Math. Nachr. 140, 7–36 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gröger K.: On the boundedness of solutions to the basic equations in semiconductor theory. Math. Nachr. 129, 167–174 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gröger K.: Initial-boundary value problems from semiconductor device theory. Z. Angew. Math. Mech. 67, 345–355 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hale J.K., Raugel G.: A damped hyperbolic equation on thin domains. Trans. Amer. Math. Soc. 329, 185–219 (1992)

    Article  MathSciNet  Google Scholar 

  11. Hale J.K., Raugel G.: Reaction-diffusion equation on thin domains. J. Math. Pures et Appl. 71, 33–95 (1992)

    MathSciNet  MATH  Google Scholar 

  12. Holmes M.: Nonlinear ionic diffusion through charged polymeric gels. SIAM J. Appl. Math. 50, 839–852 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jerome J.W.: Consistency of semiconductor modeling: an existence/stability analysis for the stationary Van Roosbroeck system. SIAM J. Appl. Math. 45, 565–590 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jerome J.W., Kerkhoven T.: A finite element approximation theory for the drift-diffusion semiconductor model. SIAM J. Numer. Anal. 28, 403–422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Liu W.: Geometric singular perturbation approach to steady-state Poisson–Nernst–Planck systems. SIAM J. Appl. Math. 65, 754–766 (2005)

    Article  MathSciNet  Google Scholar 

  16. Liu W.: One-dimensional steady-state Poisson–Nernst–Planck systems for ion channels with multiple ion species. J. Differ. Equ. 246, 428–451 (2009)

    Article  MATH  Google Scholar 

  17. Mock M.S.: Asymptotic behavior of solutions of transport equations for semiconductor devices. J. Math. Anal. Appl. 49, 215–225 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nonner W., Eisenberg R.S.: Ion permeation and glutamate residues linked by Poisson–Nernst–Planck theory in L-typecal-ciumchannels. Biophys. J. 75, 1287–1305 (1998)

    Article  Google Scholar 

  19. Park J.-K., Jerome J.W.: Qualitative properties of steady-state Poisson–Nernst–Planck systems: mathematical study. SIAM J. Appl. Math. 57, 609–630 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Raugel G., Sell G.R.: Navier–Stokes equations on thin 3D domains. I. Global attractors and global regularity of solutions. J. Amer. Math. Soc. 6, 503–568 (1993)

    MathSciNet  MATH  Google Scholar 

  21. Raugel, G., Sell, G.: Navier–Stokes equations in thin 3D domains. III. Existence of a global attractor. Turbulence in fluid flows, pp. 137–163, IMA Math. Appl. 55. Springer, New York (1993)

  22. Raugel, G., Sell, G.: Navier–Stokes equations on thin 3D domains. II. Global regularity of spatially periodic solutions. Nonlinear partial differential equations and their applications. Collège de France Seminar, vol. XI (Paris, 1989–1991), pp. 205–247, Pitman Res. Notes Math. Ser., 299. Longman Sci. Tech., Harlow (1994)

  23. Rubinstein I.: Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA (1990)

    Google Scholar 

  24. Seidman T.: Time-dependent solutions of a nonlinear system arising in semiconductor theory-II, boundedness and periodicity. Nonlinear Anal. TMA 10, 491–502 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. van Roosbroeck W.: Theory of the flow of electrons and holes in Germanium and other semi-conductors. Bell Syst. Tech. J. 29, 560–607 (1950)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weishi Liu.

Additional information

Dedicated to Professor Jack K. Hale on the occasion of his 80th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Wang, B. Poisson–Nernst–Planck Systems for Narrow Tubular-Like Membrane Channels. J Dyn Diff Equat 22, 413–437 (2010). https://doi.org/10.1007/s10884-010-9186-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10884-010-9186-x

Keywords

Mathematics Subject Classification (2000)

Navigation