Skip to main content
Log in

On global integer extrema of real-valued box-constrained multivariate quadratic functions

  • Published:
Journal of Combinatorial Optimization Aims and scope Submit manuscript

Abstract

Determining global integer extrema of an real-valued box-constrained multivariate quadratic functions is a very difficult task. In this paper, we present an analytic method, which is based on a combinatorial optimization approach in order to calculate global integer extrema of a real-valued box-constrained multivariate quadratic function, whereby this problem will be proven to be as NP-hard via solving it by a Travelling Salesman instance. Instead, we solve it using eigenvalue theory, which allows us to calculate the eigenvalues of an arbitrary symmetric matrix using Newton’s method, which converges quadratically and in addition yields a Jordan normal form with \(1 \times 1\)-blocks, from which a special representation of the multivariate quadratic function based on affine linear functions can be derived. Finally, global integer minimizers can be calculated dynamically and efficiently most often in a small amount of time using the Fourier–Motzkin- and a Branch and Bound like Dijkstra-algorithm. As an application, we consider a box-constrained bivariate and multivariate quadratic function with ten arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Applegate DL, Bixby RM, Chvátal V, Cook WJ (2006) The traveling salesman problem. ISBN 0-691-12993-2

  • Artin E (1960/61) Analytic Geometry und Algebra I, II. Lessons at he university of Hamburg, 1960/61. Part I worked out by H. Behncke und W. Hansen, Part II worked out by H. Kiendl und W. Hansen

  • Arora S (1998) Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J ACM 45(5):753–782

    Article  MathSciNet  MATH  Google Scholar 

  • Beardwood J, Halton JH, Hammersley JM (1959) The shortest path through many points. Proc Camb Philos Soc 55:299–327

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R (1960) Combinatorial processes and dynamic programming. In: Bellman R, Hall M Jr (eds) Combinatorial analysis, Proceedings of symposia in applied mathematics 10. American Mathematical Society, Providence, pp 217–249

  • Bellman R (1962) Dynamic programming treatment of the travelling salesman problem. J Assoc Comput Mach 9:61–63

    Article  MathSciNet  MATH  Google Scholar 

  • Berman P, Karpinski M (2006) 8/7-Approximation algorithm for (1,2)-TSP. In: Proceedings of 17th ACM-SIAM symposium on discrete algorithms (SODA ’06), pp 641–648

  • Bosch S (2001) Algebra, 4th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Chi L (2004) Extrema of a real polynomial. J Glob Optim 30(4):405–433

    Article  MathSciNet  Google Scholar 

  • Christofides N (1976) Worst-case analysis of a new heuristic for the travelling salesman problem. Technical report 388, Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh

  • Dantzig GB, Fulkerson R, Johnson SM (1954) Solution of a large-scale traveling salesman problem. Oper Res 2(4):393–410

    MathSciNet  Google Scholar 

  • Dijkstra W (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271

    Article  MathSciNet  MATH  Google Scholar 

  • Gutin G, Yeo A, Zverovich A (2002) Traveling salesman should not be greedy: domination analysis of greedy-type heuristics for the TSP. Discrete Appl Math 117(13):81–86

    Article  MathSciNet  MATH  Google Scholar 

  • Hassin R, Rubinstein S (2000) Better approximations for max TSP. Inf Process Lett 75(4):181–186

    Article  MathSciNet  MATH  Google Scholar 

  • Held M, Karp RM (1962) A dynamic programming approach to sequencing problems. J Soc Ind Appl Math 10(1):196–210

    Article  MathSciNet  MATH  Google Scholar 

  • Householder AS (1970) The numerical treatment of a single nonlinear Equation. MacGraw-Hill, New York

    MATH  Google Scholar 

  • Kaplan H, Lewenstein L, Shafrir N, Sviridenko M (2004) Approximation algorithms for asymmetric TSP by decomposing directed regular multigraphs. In: Proceedings of 44th IEEE symposium on foundations of computer science, pp 56–65

  • Karpinski M, Lampis M, Schmied R (2015) New Inapproximability bounds for TSP. J Comput Syst Sci 81(8):1665–1677

    Article  MathSciNet  MATH  Google Scholar 

  • Lasserre JB (2001) Global optimization with polynomials and the problem of moments. SIAM J Optim 11(7):796–817

    Article  MathSciNet  MATH  Google Scholar 

  • Lawler EL, Lenstra JK, Rinnooy Kan AHG, Shmoys DB (1985) The traveling salesman problem: a guided tour of combinatorial optimization. Wiley, London

    MATH  Google Scholar 

  • Marden M (1966) Geometry of polynomials. American Mathematical Society, Providence

    MATH  Google Scholar 

  • Padberg M, Rinaldi G (1991) A Branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems. SIAM Rev 33(1):60–100. doi:10.1137/1033004

    Article  MathSciNet  MATH  Google Scholar 

  • Papadimitriou Christos H (1977) The Euclidean traveling salesman problem is NP-complete. Theor Comput Sci 4(3):237–244

    Article  MathSciNet  MATH  Google Scholar 

  • Qi L, Teo KL (2003) Multivariate polynomial minimization and its application in signal processing. J Glob Optim 26:419–433

    Article  MathSciNet  MATH  Google Scholar 

  • Rosenkrantz DJ, Stearns RE, Lewis PM II (1977) An analysis of several heuristics for the traveling salesman problem. SIAM J Comput 6(5):563–581

    Article  MathSciNet  MATH  Google Scholar 

  • Shor NZ (1998) Non-differentiable optimization and polynomial problems. Kluwer, Dordrecht

    Book  Google Scholar 

  • Shustin E (1996) Critical points of real polynomials, subdivisions of Newton polyhedra and topology of real algebraic hyper-surfaces. Am Math Soc Transl 173:203–223

    MATH  Google Scholar 

  • Steinerberger S (2015) New bounds for the traveling salesman constant. Adv Appl Probab 47:27–36

    Article  MathSciNet  MATH  Google Scholar 

  • Thng I, Cantoni A, Leung YH (1996) Analytical solutions to the optimization of a quadratic cost function subject to linear and quadratic equality constraints. Appl Math Optim 34:161–382

    Article  MathSciNet  MATH  Google Scholar 

  • Walshaw C (2000) A multilevel approach to the travelling salesman problem. CMS Press, London

    MATH  Google Scholar 

  • Walshaw C (2001) A multilevel Lin–Kernighan–Helsgaun algorithm for the travelling salesman problem. CMS Press, London

    Google Scholar 

  • Wörz S (2015) Optimising logistic problems in a traditional corn harvest chain. Dissertation, Chair for Agricultural Engineering of University of Technology Munich

  • Wöz S (2016) Solving traveling salesman problems using Dijkstra’s algorithm. Complexity (submitted)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sascha Wörz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wörz, S. On global integer extrema of real-valued box-constrained multivariate quadratic functions. J Comb Optim 34, 964–986 (2017). https://doi.org/10.1007/s10878-017-0123-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10878-017-0123-3

Keywords

Mathematics Subject Classification

Navigation