Skip to main content
Log in

The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults

  • Original Research
  • Published:
Journal of Clinical Monitoring and Computing Aims and scope Submit manuscript

Abstract

To compare the performance of a bioreactance cardiac output (CO) monitor (NICOM) and transcutaneous Doppler (USCOM) during head up tilting (HUT). Healthy young adult subjects, age 22 ± 1 years, 7 male and 7 female, were tilted over 3–5 s from supine to 70° HUT, 30° HUT and back to supine. Positions were held for 3 min. Simultaneous readings of NICOM and USCOM were performed 30 s into each new position. Mean blood pressure (MBP), heart rate (HR), CO and stroke volume (SV), and thoracic fluid content (TFC) were recorded. Bland–Altman, percentage changes and analysis of variance for repeated measures were used for statistical analysis. Pre-tilt NICOM CO and SV readings (6.1 ± 1.0 L/min and 113 ± 25 ml) were higher than those from USCOM (4.1 ± 0.6 L/min and 77 ± 9 ml) (P < 0.001). Bland–Altman limits of agreement for CO were wide with a percentage error of 38 %. HUT increased MBP and HR (P < 0.001). CO and SV readings decreased with HUT. However, the percentage changes in USCOM and NICOM readings did not concur (P < 0.001). Whereas USCOM provided gravitational effect proportional changes in SV readings of 23 ± 15 % (30° half tilt) and 44 ± 11 % (70° near full tilt), NICOM changes did not being 28 ± 10 and 33 ± 11 %. TFC decreased linearly with HUT. The NICOM does not provide linear changes in SV as predicted by physiology when patients are tilted. Furthermore there is a lack of agreement with USCOM measurements at baseline and during tilting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Minto G, Scott MJ, Miller TE. Monitoring needs and goal-directed fluid therapy within an enhanced recovery program. Anesthesiol Clin. 2015;33(1):35–49. doi:10.1016/j.anclin.2014.11.003.

    Article  PubMed  Google Scholar 

  2. Critchley LA. Impedance cardiography. The impact of new technology. Anaesthesia. 1998;53(7):677–84.

    Article  CAS  PubMed  Google Scholar 

  3. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583–9. doi:10.1152/ajpheart.00195.2007.

    Article  CAS  PubMed  Google Scholar 

  4. Critchley LA, Peng ZY, Fok BS, Lee A, Phillips RA. Testing the reliability of a new ultrasonic cardiac output monitor, the USCOM, by using aortic flowprobes in anesthetized dogs. Anesth Analg. 2005;100(3):748–53. doi:10.1213/01.ane.0000144774.42408.05.

    Article  PubMed  Google Scholar 

  5. Phillips RA, Hood SG, Jacobson BM, West MJ, Wan L, May CN. Pulmonary artery catheter (PAC) accuracy and efficacy compared with flow probe and transcutaneous doppler (USCOM): an ovine cardiac output validation. Crit Care Res Pract. 2012;2012:9. doi:10.1155/2012/621496.

    Google Scholar 

  6. Huang L, Critchley LA. An assessment of two Doppler-based monitors to track cardiac output changes in anaesthetised patients undergoing major surgery. Anaesth Intensive Care. 2014;42(5):631–9.

    CAS  PubMed  Google Scholar 

  7. Li H, Critchley LA, Zhang J. Does using two Doppler cardiac output monitors in tandem provide a reliable trend line of changes for validation studies? J Clin Monit Comput. 2015:1–9. doi:10.1007/s10877-10015-19753-10870. doi:10.1007/s10877-015-9753-0.

  8. Huang L, Critchley LA, Zhang J. Major upper abdominal surgery alters the calibration of bioreactance cardiac output readings, the NICOM, when comparisons are made against suprasternal and esophageal Doppler intraoperatively. Anesth Analg. 2015;121(4):936–45. doi:10.1213/ANE.0000000000000889.

    Article  PubMed  Google Scholar 

  9. Sander-Jensen K, Secher NH, Astrup A, Christensen N, Giese J, Schwartz T, Warberg J, Bie P. Hypotension induced by passive head-up tilt: endocrine and circulatory mechanisms. Am J Physiol Regul Integr Comp Physiol. 1986;251(4):R742–8.

    CAS  Google Scholar 

  10. Critchley LA, Huang L. USCOM-window to the circulation: utility of supra-sternal Doppler in an elderly anaesthetized patient for a robotic cystectomy. J Clin Monit Comput. 2014;28(1):83–93. doi:10.1007/s10877-013-9499-5.

    Article  PubMed  Google Scholar 

  11. Nidorf SM, Picard MH, Triulzi MO, Thomas JD, Newell J, King ME, Weyman AE. New perspectives in the assessment of cardiac chamber dimensions during development and adulthood. J Am Coll Cardiol. 1992;19(5):983–8.

    Article  CAS  PubMed  Google Scholar 

  12. Kossari N, Hufnagel G, Squara P. Bioreactance: a new tool for cardiac output and thoracic fluid content monitoring during hemodialysis. Hemodial Int. 2009;13(4):512–7. doi:10.1111/j.1542-4758.2009.00386.x.

    Article  PubMed  Google Scholar 

  13. Cattermole G, Leung P, Tang C, Smith B, Graham C, Rainer T. A new method to score the quality of USCOM scans. Hong Kong J Emerg Med. 2009;16(4):288.

    Google Scholar 

  14. Bland JM, Altman DG. Measuring agreement in method comparison studies. Stat Methods Med Res. 1999;8(2):135–60.

    Article  CAS  PubMed  Google Scholar 

  15. Bland JM, Altman DG. Agreement between methods of measurement with multiple observations per individual. J Biopharm Stat. 2007;17(4):571–82. doi:10.1080/10543400701329422.

    Article  PubMed  Google Scholar 

  16. Critchley LA, Conway F, Anderson PJ, Tomlinson B, Critchley JA. Non-invasive continuous arterial pressure, heart rate and stroke volume measurements during graded head-up tilt in normal man. Clin Auton Res. 1997;7(2):97–101.

    Article  CAS  PubMed  Google Scholar 

  17. Squara P, Denjean D, Estagnasie P, Brusset A, Dib JC, Dubois C. Noninvasive cardiac output monitoring (NICOM): a clinical validation. Intensive Care Med. 2007;33(7):1191–4. doi:10.1007/s00134-007-0640-0.

    Article  PubMed  Google Scholar 

  18. Raval NY, Squara P, Cleman M, Yalamanchili K, Winklmaier M, Burkhoff D. Multicenter evaluation of noninvasive cardiac output measurement by bioreactance technique. J Clin Monit Comput. 2008;22(2):113–9. doi:10.1007/s10877-008-9112-5.

    Article  PubMed  Google Scholar 

  19. van Lieshout JJ, Harms MP, Pott F, Jenstrup M, Secher NH. Stroke volume of the heart and thoracic fluid content during head-up and head-down tilt in humans. Acta Anaesthesiol Scand. 2005;49(9):1287–92. doi:10.1111/j.1399-6576.2005.00841.x.

    Article  PubMed  Google Scholar 

  20. Kyle UG, Zhang FF, Morabia A, Pichard C. Longitudinal study of body composition changes associated with weight change and physical activity. Nutrition. 2006;22(11–12):1103–11. doi:10.1016/j.nut.2006.08.003.

    Article  PubMed  Google Scholar 

  21. Piccoli A. Whole body–single frequency bioimpedance. Contrib Nephrol. 2005;149:150–61. doi:10.1159/000085478.

    Article  PubMed  Google Scholar 

  22. Meng L, Tran NP, Alexander BS, Laning K, Chen G, Kain ZN, Cannesson M. The impact of phenylephrine, ephedrine, and increased preload on third-generation Vigileo-FloTrac and esophageal doppler cardiac output measurements. Anesth Analg. 2011;113(4):751–7. doi:10.1213/ANE.0b013e31822649fb.

    Article  CAS  PubMed  Google Scholar 

  23. Matthieu B, Karine N-G, Vincent C, Alain V, François CJ, Philippe R, François S. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106(5):1480–6.

    Article  Google Scholar 

  24. Critchley LA, Peng ZY, Fok BS, James AE. The effect of peripheral resistance on impedance cardiography measurements in the anesthetized dog. Anesth Analg. 2005;100(6):1708–12.

    Article  PubMed  Google Scholar 

  25. Benomar B, Ouattara A, Estagnasie P, Brusset A, Squara P. Fluid responsiveness predicted by noninvasive bioreactance-based passive leg raise test. Intensive Care Med. 2010;36(11):1875–81. doi:10.1007/s00134-010-1990-6.

    Article  PubMed  Google Scholar 

  26. Marik PE, Levitov A, Young A, Andrews L. The use of bioreactance and carotid Doppler to determine volume responsiveness and blood flow redistribution following passive leg raising in hemodynamically unstable patients. Chest. 2013;143(2):364–70. doi:10.1378/chest.12-1274.

    Article  PubMed  Google Scholar 

  27. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34(4):659–63. doi:10.1007/s00134-008-0994-y.

    Article  PubMed  Google Scholar 

  28. Kupersztych-Hagege E, Teboul JL, Artigas A, Talbot A, Sabatier C, Richard C, Monnet X. Bioreactance is not reliable for estimating cardiac output and the effects of passive leg raising in critically ill patients. Br J Anaesth. 2013;111(6):961–6. doi:10.1093/bja/aet282.

    Article  CAS  PubMed  Google Scholar 

  29. Conway DH, Hussain OA, Gall I. A comparison of noninvasive bioreactance with oesophageal Doppler estimation of stroke volume during open abdominal surgery: an observational study. Eur J Anaesthesiol. 2013;30(8):501–8. doi:10.1097/EJA.0b013e3283603250.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

No relevant financial relationships to disclose. The NICOM device used in the study was provided by Pro-Cure Medical Technology Co., Ltd., Hong Kong.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zhang.

Ethics declarations

Conflict of interest

All authors have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Critchley, L.A.H., Lee, D.C.W. et al. The effect of head up tilting on bioreactance cardiac output and stroke volume readings using suprasternal transcutaneous Doppler as a control in healthy young adults. J Clin Monit Comput 30, 519–526 (2016). https://doi.org/10.1007/s10877-016-9835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10877-016-9835-7

Keywords

Navigation