Skip to main content
Log in

Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this study, silver nanoparticles (AgNPs) were decorated onto functionalized carbon nanotubes (Ag/f-MWCNTs) using a green method under sunlight conditions. The as-synthesized composite was characterized by UV–vis spectroscopy, XRD, FTIR, SEM, and TEM microscopy. In Ag/f-MWCNTs composite, synthesized NPs were spherically shaped, with particle size ranging from 17.1 to 30.5 nm. The photocatalytic degradation activity of Ag/f-MWCNTs composite was evaluated for the degradation of the cationic methylene blue (MB) dye solution. The rate constants for photocatalytic dye degradation were 0.012 and 0.051 min−1 for f-MWCNT and Ag/f-MWCNTs respectively. Compared with that of f-MWCNTs, Ag/f-MWCNTs composite showed high dye degradation activity after irradiation for 60 min. In addition, photocatalytic bacterial inhibition was studied for the gram-negative bacterium Escherichia coli at different time intervals under visible light irradiation. Ag/f-MWCNTs exhibited maximum photocatalytic bacteria inactivation after 120 min. Based on the obtained results, Ag/f-MWCNTs are a tremendously efficient photocatalyst for the degradation of toxic dyes and bacteria inactivation, and the synthesized material serves as an efficient component for wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. J. Joshiba, P. S. Kumar, F. C. Christopher, and B. B. Govindaraj (2019). IET Nanobiotechnol. 13, 553–559.

    Google Scholar 

  2. N. Boudechiche, H. Mokkaddaem, Z. Sadaouli, and M. Trari (2016). Int. J. Ind. Chem. 7, 67–180.

    Google Scholar 

  3. M. H. Abdellah, S. A. Nosier, A. H. El-Shazly, and A. A. Mubarak (2018). Alex. Eng. J. 57, 3727–3735.

    Google Scholar 

  4. M. Oz, D. E. Lorke, M. Hasan, and G. A. Petroianu (2011). Med. Res. Rev. 31, 93–117.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. M. F. Imron, S. B. Kurniawan, A. Soegianto, and F. E. Wahyudianto (2019). Heliyon 5, e02206.

    PubMed  PubMed Central  Google Scholar 

  6. S. Rashad, A. H. Zaki, and A. A. Farghali (2019). Nanomater. Nanotechnol. 9, 1–10.

    Google Scholar 

  7. A. K. Gupta, A. Pal, and C. Sahoo (2006). Dyes Pigments 69, 224–232.

    CAS  Google Scholar 

  8. J. Park, E. Kettleson, W. Jin An, Y. J. Tang, and P. Biswas (2013). Catalysts 3, 247–260.

    CAS  Google Scholar 

  9. M. M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. Del Monte, J. H. Clark, and M. J. MacLachlan (2015). Chem. Soc. Rev. 44, 250–290.

    CAS  PubMed  Google Scholar 

  10. J. Deng, Y. You, V. Sahajwalla, and R. K. Joshi (2016). Carbon 96, 105–115.

    CAS  Google Scholar 

  11. O. Zaytseva and G. Neumann (2016). Chem. Biol. Technol. Agric. 3, 17.

    Google Scholar 

  12. S. Abdalla, F. Al-Marzouki, A. A. Al-Ghamdi, and A. A. Daiem (2015). Nanoscale Res. Lett. 10, 358.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Ihsanullah, A. M. Abbas, T. Al-Amer, M. J. Laoui, M. S. Al-Marri, M. Nasser, M. Khraisheh, and M. Ali Atieh (2016). Sep. Purif. Technol. 157, 141–161.

    CAS  Google Scholar 

  14. M. Rajabi, K. Mahanpoor, and O. Moradi (2017). RSC Adv. 7, 47083–47090.

    CAS  Google Scholar 

  15. L. Zhanga, Y. Hashimotoa, T. Taishi, and Q. Qing Ni (2011). Appl. Surf. Sci. 257, 1845–1849.

    Google Scholar 

  16. J. Luo, Y. Liu, H. Wei, B. Wang, K. Hsu Wu, B. Zhang, and D. Sheng Su (2017). Green Chem. 19, 1052–1062.

    CAS  Google Scholar 

  17. G. Singer, P. Siedlaczek, G. Sinn, H. Rennhofer, M. Mičušík, M. Omastová, M. M. Unterlass, J. Wendrinsky, V. Milotti, F. Fedi, T. Pichler, and H. C. Lichtenegger (2018). Nanomaterials 8, 912.

    PubMed Central  Google Scholar 

  18. K. Nagaraju, R. Reddy, and N. Reddy (2015). J. Appl. Biomater. Funct. Mater. 13, e301–e312.

    CAS  PubMed  Google Scholar 

  19. L. Pietrzak and J. K. Jeszka (2009). Mater. Sci. Pol. 27, 694–698.

    Google Scholar 

  20. P. Lassèguea, L. Noé, M. Monthioux, and B. Caussat (2017). Surf. Coat Technol. 331, 129–136.

    Google Scholar 

  21. A. Kumar, J. Dalal, S. Dahiya, R. Punia, K. D. Sharma, A. Ohlan, and A. S. Maan (2019). Ceram. Inter. 45, 1011–1019.

    CAS  Google Scholar 

  22. R. Akbarzadeh, M. Ghaedi, S. N. Kokhdan, and D. Vashaee (2019). Dalton Trans. 48, 898–907.

    CAS  PubMed  Google Scholar 

  23. S. Shahrokhiana and S. Rastgar (2012). Electrochim. Acta 78, 422–429.

    Google Scholar 

  24. X. Hou, L. Wang, and R. Wu (2011). Bull. Korean Chem. Soc. 32, 2527–2528.

    Google Scholar 

  25. S. Mohan, O. S. Oluwafemi, S. P. Songca, D. Rouxel, P. Miska, F. B. Lewu, N. Kalarikkal, and S. Thomas (2016). Pure Appl. Chem. 88, 71–81.

    CAS  Google Scholar 

  26. V. M. Rao, C. H. Castano, J. Rojas, and A. J. Abdulghani (2013). Radiat. Phys. Chem. 89, 51–56.

    CAS  Google Scholar 

  27. M. Mehrabi, P. Parvin, A. Reyhani, and S. Z. Mortazavi (2017). Mater. Res. Exp. 4, 095030.

    Google Scholar 

  28. T. A. Saleh (2017). Int. J. Sci. Res. Environ. Sci. Toxicol. 2, 1–4.

    Google Scholar 

  29. M. Anouar, R. Jbilat, V. Le Borgne, D. Ma, and M. A. El Khakani (2016). Mater. Renew. Sustain Energy 5, 1.

    Google Scholar 

  30. Y. Seo, J. Hwang, J. Kim, Y. Jeong, M. P. Hwang, and J. Choi (2014). Int. J. Nanomed. 9, 4621–4629.

    Google Scholar 

  31. E. H. Espinosa, R. Ionescu, B. Chambon, G. Bedis, E. Sotter, C. Bittencourt, A. Felten, J. J. Pireaux, X. Correig, and E. Llobet (2007). Sens. Actuators B Chem. 127, 137–142.

    CAS  Google Scholar 

  32. H. A. Asmaly, B. Abussaud, B. Ihsanullah, T. A. Saleh, V. K. Gupta, and M. A. Atieh (2015). J. King Saudi Chem. Soc. 19, 511–520.

    Google Scholar 

  33. M. Moazzen, A. M. Khaneghah, N. Shariatifar, A. Mahsa, E. S. Ismail, A. N. Baghani, S. Yousefinejad, M. Alimohammadi, A. Azari, S. Dobaradaran, N. Rastkari, S. Nazmara, M. Delikhoon, and G. R. Khaniki (2019). Arabian J. Chem. 12, 476–488.

    CAS  Google Scholar 

  34. K. Li, W. Wang, and D. Cao (2011). Sens. Actuators B 159, 171–177.

    CAS  Google Scholar 

  35. N. M. Mahmoodi (2013). Water Air Soil Pollut. 224, 1612.

    Google Scholar 

  36. Y. Yang, C. Zhang, D. Huang, G. Zeng, J. Huang, C. Cheng, and W. Xiong (2019). Appl. Catal. B Environ. 245, 87–99.

    CAS  Google Scholar 

  37. Y. Yang, Z. Zeng, G. Zeng, D. Huang, R. Xiao, C. Zhang, C. Zhou, W. Xiong, W. Wang, M. Cheng, W. Xue, H. Guo, X. Tang, and D. He (2019). Appl. Catal. B Environ. 258, 117956.

    CAS  Google Scholar 

  38. P. D. Shamkumar, G. D. Anata, M. P. Satish, B. M. Sajid, V. M. Krantiveer, and D. D. Sagar (2020). ACS Omega 5, 219–227.

    Google Scholar 

  39. A. J. Haider, A. D. Thamir, D. S. Ahmed, and M. R. Mohammad (2016). AIP Conf. Proc. 1758, 030003.

    Google Scholar 

  40. W. Wang, Z. Zeng, G. Zeng, C. Zhang, R. Xiao, C. Zhou, W. Xiong, Y. Yang, L. Lei, Y. Liu, D. Huang, M. Cheng, Y. Yang, Y. Fu, H. Luo, and Y. Zhou (2019). Chem. Eng. J. 378, 122132.

    CAS  Google Scholar 

  41. M. Bagheri, N. R. Najafabadi, and E. Borna (2020). J. King Saud Univ. Sci. 32, 799–804.

    Google Scholar 

  42. Z. Qin, Z. G. Zhang, H. M. Liu, G. Y. Qin, and X. D. Wang (2018). RSC Adv. 8, 24923–24931.

    CAS  Google Scholar 

  43. L. Shahriary, R. Nair, S. Sabharwal, and A. A. Athawale (2015). New J. Chem. 39, 4583.

    CAS  Google Scholar 

  44. S. H. Her and C. Y. Lai (2013). Materials 6, 2274–2284.

    PubMed  PubMed Central  Google Scholar 

  45. J. Peng, X. X. Qu, G. Wei, J. Li, and J. Qiao (2004). Carbon 42, 2741–2744.

    CAS  Google Scholar 

  46. J. P. Hu, J. H. Shi, S. P. Li, Y. J. Qin, Z. X. Guo, Y. L. Song, and D. B. Zhu (2005). Chem. Phys. Lett. 401, 352–356.

    CAS  Google Scholar 

  47. K. H. Oh, V. Soshnikova, J. Markus, Y. J. Kim, S. C. Lee, P. Singh, V. Castro-Aceituno, S. Ahn, D. H. Kim, Y. J. Shim, Y. J. Kim, and D. C. Yang (2018). Artif. Cells Nanomed. Biotechnol. 46, 599–606.

    CAS  PubMed  Google Scholar 

  48. P. Nie, C. Min, H. J. Song, X. Chen, Z. Zhang, and K. Zhao (2015). Tribol. Lett. 58, 7.

    Google Scholar 

  49. H. S. Park, J. Y. Hwang, U. S. Shin, H. W. Kim, and M. S. Gong (2011). Bull. Korean Chem. Soc. 32, 3581–3586.

    CAS  Google Scholar 

  50. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R. J. Kalenczuk (2008). Mater. Sci. Pol. 26, 434–441.

    Google Scholar 

  51. P. Corio, A. P. Santos, P. S. Santos, M. L. A. Temperini, V. W. Brar, M. A. Pimenta, and M. S. Dresselhaus (2004). Chem. Phys. Lett. 383, 475–480.

    CAS  Google Scholar 

  52. F. Hosseini, A. Kasaeian, F. Pourfayaz, M. Sheikhpour, and D. Wen (2018). Mater. Sci. Semiconduct. Process. 83, 175–185.

    CAS  Google Scholar 

  53. Y. J. Gu and W. T. Wong (2006). Langmuir 22, 11447–11452.

    CAS  PubMed  Google Scholar 

  54. Y. Y. Zhang and J. Mu (2007). J. Colloid Interface Sci. 309, 478–484.

    CAS  PubMed  Google Scholar 

  55. Y. Yan, H. Sun, P. Yao, S. Z. Kang, and J. Mu (2011). Appl. Surf. Sci. 257, 3260–3626.

    Google Scholar 

  56. D. Chaudhary, S. Singh, V. D. Vankar, and N. Khare (2017). Int. J. Hydrog. Energy 42, 7826–7835.

    CAS  Google Scholar 

  57. M. Masoud, A. Nourbakhsh, and S. A. Hassanzadeh-Tabrizi (2017). Inorg. Nano-Met. Chem. 27, 1168–1174.

    Google Scholar 

  58. R. Georgekutty, M. K. Seery, and S. C. Pillai (2008). J. Phys. Chem. C 112, 13563–13570.

    CAS  Google Scholar 

  59. V. P. Dinesh, P. Biji, A. Ashok, S. K. Dhara, M. Kamruddin, A. K. Tyagi, and B. Raj (2014). RSC Adv. 4, 58930–58940.

    CAS  Google Scholar 

  60. I. Voukkalia and A. A. Zorpas (2014). Desalin. Water Treat. 56, 1150–1161.

    Google Scholar 

  61. J. Choi and R. L. Valentine (2002). Water Res. 36, 817–824.

    CAS  PubMed  Google Scholar 

  62. Y. Feng, L. Liu, J. Zhang, H. Aslan, and M. Dong (2017). J. Mater. Chem. B 5, 8631–8652.

    CAS  PubMed  Google Scholar 

  63. W. Wang, Y. Yu, T. An, G. Li, H. Y. Yip, J. C. Yu, and P. K. Wong (2012). Sci. Technol. 46, 4599–4606.

    CAS  Google Scholar 

  64. W. Wang, Y. C. Yu, D. Xia, P. K. Wong, and Y. Li (2013). Environ. Sci. Technol. 47, 8724–8732.

    CAS  PubMed  Google Scholar 

  65. Y. Chen, A. Lu, Y. Li, L. Zhang, H. Y. Yip, H. Zhao, T. An, and P. K. Wong (2011). Environ. Sci. Technol. 45, 5689–5695.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korean government (2018R1A2B6006056 and 2020R1A2C1012439).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Young Jung Wee or Jaesool Shim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagajyothi, P.C., Veeranjaneya Reddy, L., Devarayapalli, K.C. et al. Environmentally Friendly Synthesis: Photocatalytic Dye Degradation and Bacteria Inactivation Using Ag/f-MWCNTs Composite. J Clust Sci 32, 711–718 (2021). https://doi.org/10.1007/s10876-020-01821-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01821-8

Keywords

Navigation