Skip to main content
Log in

Tailored Au and Pt Containing Multi-metallic Nanocomposites for a Promising Fuel Cell Reaction

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The development of an efficient syntheses method to produce multimetallic nanocomposites with an appropriate structure is required to study the structure–composition–property relationship of the synthesized nanocomposites and to investigate, evaluate their possible technological applications. In this work, a fine hetero-structured Au and Pt containing multi-metallic nanocomposites (Au/Pt/Ag and Au/Pd/Pt colloidal nanocomposites) were synthesized through a microwave irradiation method with the use of trisodium citrate as a reducing agent and it has been coated on the glassy carbon electrode. It is characterized by high-resolution transmission electron microscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopic techniques to elucidate structure, surface morphology, bulk-composition and metallic state of the resulting Au/Pt/Ag and Au/Pd/Pt colloidal nanocomposites respectively. The colloidal nanocomposites were also characterized by zeta potential and dynamic light scattering studies. The electrochemical techniques (cyclic voltammetry and chronoamperometry) have been employed to investigate the electrochemical parameters related to the electro-oxidation of methanol which in turn will be useful for conventional fuel cell applications. In addition to that, the density functional theoretical optimized minimum-energy structures of Pt n (n = 3–6) were studied as they are forming shell and thus involved in catalysis. Electronic density of state plots of the optimized Pt n and Pd n clusters using B3LYP/Lanl2DZ level of theory was made. The multi-metallic nanocomposites of these metals are proposed as a promising new class of catalyst for the electro-oxidation reaction of methanol particularly in fuel-cell applications. The formation of hetero-structure is discussed as the desirable condition to obtain a better electrocatalytic activity. It is also found that, the electrocatalytic activity and stability of the resultant Au/Pt/Ag colloidal nanocomposites modified glassy carbon electrode is much better catalyst towards methanol electrooxidation in acid medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. C. Shang, W. Hong, J. Wang, and E. Wang (2015). Carbon Supported Trimetallic Nickel–Palladium–Gold Hollow Nanoparticles with Superior Catalytic Activity for Methanol Electrooxidation. J. Power Sources 285, 12.

    Article  CAS  Google Scholar 

  2. C. Li and Y. Yamauchi (2013). Facile Solution Synthesis of Ag@Pt Core-Shell Nanoparticles with Dendritic Pt Shells. Phys. Chem. Chem. Phys. 15, 3490.

    Article  CAS  Google Scholar 

  3. R. Wang, C. Wang, W. B. Cai, and Y. Ding (2010). Ultralow-Platinum-Loading High-Performance Nanoporous Electrocatalysts with Nanoengineered Surface Structures. Adv. Mater. 22, 1845.

    Article  CAS  Google Scholar 

  4. L. X. Ding, G. R. Li, Z. L. Wang, Z. Q. Liu, H. Liu, and Y. X. Tong (2012). Porous Ni@Pt Core-Shell Nanotube Array Electrocatalyst with High Activity and Stability for Methanol Oxidation. Chem. Eur. J. 18, 8386.

    Article  CAS  Google Scholar 

  5. M. M. Liu, Y. Z. Lu, and W. Chen (2013). PdAg Nanorings Supported on Graphene Nanosheets: Highly Methanol-Tolerant Cathode Electrocatalyst for Alkaline Fuel Cells. Adv. Funct. Mater. 23, 1289.

    Article  CAS  Google Scholar 

  6. Z. Yin, M. F. Chi, Q. J. Zhu, D. Ma, J. M. Sun, and X. H. Bao (2013). Supported Bimetallic PdAu Nanoparticles with Superior Electrocatalytic Activity Towards Methanol Oxidation. J. Mater. Chem. A 1, 9157.

    Article  CAS  Google Scholar 

  7. J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim (2013). Recent Progress in the Development of Anode and Cathode Catalysts for Direct Methanol Fuel Cells. Nano Energy 2, 553.

    Article  CAS  Google Scholar 

  8. Y. Zhang, G. Chang, S. Liu, J. Tian, L. Wang, W. Lu, X. Qin, and X. Sun (2011). Microwave-assisted, Environmentally Friendly, One-pot Preparation of Pd Nanoparticles/Graphene Nanocomposites and Their Application in Electrocatalytic Oxidation of Methanol. Catal. Sci. Technol. 1, 1636.

    Article  CAS  Google Scholar 

  9. S. Link and M. A. El-Sayed (2000). Shape and Size Dependence of Radiative, Non-radiative and Photothermal Properties of Gold Nanocrystals. Int. Rev. Phys. Chem. 19, 409.

    Article  CAS  Google Scholar 

  10. A. I. Ryasnyanskiy, B. Palpant, S. Debrus, U. Pal, and A. L. Stepanov (2007). Optical Non-linearities of Au Nanoparticles Embedded in a Zinc Oxide Matrix. Opt. Commun. 273, 538.

    Article  CAS  Google Scholar 

  11. G. Schmid and B. Corain Nanoparticulated Gold: Syntheses, Structures, Electronics, and Reactivities (Eur J, Inorg. Chem., 2003), p. 3081.

    Google Scholar 

  12. B. Karthikeyan and M. Murugavelu (2012). Nano Bimetallic Ag/Pt System as Efficient Opto and Electrochemical Sensing Platform towards Adenine. Sens. Actuators B 163, 216.

    Article  CAS  Google Scholar 

  13. W. Zhao, M. A. Brook, and Y. Li (2008). Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays. Chem. Bio. Chem. 9, 2363.

    Article  CAS  Google Scholar 

  14. K. Saha, S. S. Agasti, C. Kim, X. Li, and V. M. Rotello (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 112, 2739.

    Article  CAS  Google Scholar 

  15. T. K. Sau, A. L. Rogach, F. Jackel, T. A. Klar, and J. Feldmann (2010). Properties and Applications of Colloidal Non-Spherical Noble Metal Nanoparticles. Adv. Mater. 22, 1805.

    Article  CAS  Google Scholar 

  16. M. B. Cortie and A. M. Mc-Donagh (2011). Synthesis and Optical Properties of Hybrid and Alloy Plasmonic Nanoparticles. Chem. Rev. 111, 3713.

    Article  CAS  Google Scholar 

  17. M. Kim, Y. W. Lee, D. Kim, S. Lee, S. R. Ryoo, D. H. Min, S. B. Lee, and S. W. Han (2012). Reshaping Nanocrystals for Tunable Plasmonic Substrates. ACS Appl. Mater. Interfaces 4, 5038.

    Article  CAS  Google Scholar 

  18. M. Rycenga, C. M. Cobley, J. Zeng, W. Li, C. H. Moran, Q. Zhang, D. Qin, and Y. Xia (2011). Controlling the Synthesis and Assembly of Silver Nanostructures for Plasmonic Applications. Chem. Rev. 111, 3669.

    Article  CAS  Google Scholar 

  19. M. Y. Haik, A. I. Ayesh, T. Abdulrehman, and Y. Haik (2014). Novel Organic Memory Devices Using Au-Pt-Ag Nanoparticles as Charge Storage Elements. Mater. Lett. 124, 67.

    Article  CAS  Google Scholar 

  20. B. Karthikeyan and B. Loganathan (2012). Strategic Green Synthesis and Characterization of Au/Pt/Ag Trimetallic Nanocomposites. Mater. Lett. 85, 53.

    Article  CAS  Google Scholar 

  21. B. Karthikeyan and B. Loganathan (2013). A Close Look of Au/Pt/Ag Nanocomposites using SERS Assisted with Optical, Electrochemical. Spect. Theor. Methods Phys. E 49, 105.

    CAS  Google Scholar 

  22. B. Loganathan and B. Karthikeyan (2013). Au Core Pd/Pt Shell in Trimetallic Au/Pd/Pt Colloidal Nanocomposites-Physicochemical Characterization Study. Colloids Surf. A 436, 944.

    Article  CAS  Google Scholar 

  23. T. T. B. Quyen, W. N. Su, C. H. Chen, J. Rick, J. Y. Liu, and B. J. Hwang (2014). Novel Ag/Au/Pt Trimetallic Nanocages used with Surface-Enhanced Raman Scattering for Trace Fluorescent Dye Detection. J. Mater. Chem. B 2, 5550.

    Article  CAS  Google Scholar 

  24. H. Jang, S. R. Ryoo, K. Kostarelos, S. W. Han, and D. H. Min (2013). The Effective Nuclear Delivery of Doxorubicin from Dextran-Coated Gold Nanoparticles Larger than Nuclear Pores. Biomater 34, 3503.

    Article  CAS  Google Scholar 

  25. X. H. N. Xu, J. Chen, R. B. Jeffers, and S. Kyriacou (2002). Direct Measurement of Sizes and Dynamics of Single Living Membrane Transporters using Nanooptics. Nano Lett. 2, 175.

    Article  CAS  Google Scholar 

  26. J. Gu, W. C. Liu, Z. Q. Zhao, G. X. Lan, W. Zhu, and Y. W. Zhang (2014). Pt/Ru/C Nanocomposites for Methanol Electrooxidation: How Ru Nanocrystals’ Surface Structure Affects Catalytic Performance of Deposited Pt Particles. Inorg. Chem. Front. 1, 109.

    Article  CAS  Google Scholar 

  27. Q. Luo, M. Peng, X. Sun, and A. M. Asiri (2015). In Situ Growth of Nickel Selenide Nanowire Arrays on Nickel Foil for Methanol Electro-oxidation in Alkaline Media. RSC Adv. 5, 87051.

    Article  CAS  Google Scholar 

  28. G. R. Zhang, J. Wu, and B. Q. Xu (2012). Syntheses of Sub-30 nm Au@Pd Concave Nanocubes and Pt-on-(Au@Pd) Trimetallic Nanostructures as Highly Efficient Catalysts for Ethanol Oxidation. J. Phys. Chem. C 116, 20839.

    Article  CAS  Google Scholar 

  29. Q. Luo, M. Peng, X. Sun, and A. M. Asiri (2016). Hierarchical Nickel Oxide Nanosheet@nanowire Arrays on Nickel Foam: An Efficient 3D Electrode for Methanol Electro-oxidation. Catal. Sci. Technol. 6, 1157.

    Article  CAS  Google Scholar 

  30. A. Dutta and J. Datta (2012). Outstanding Catalyst Performance of PdAuNi Nanoparticles for the Anodic Reaction in an Alkaline Direct Ethanol (with Anion-Exchange Membrane) Fuel Cell. J. Phys. Chem. C 116, 25677.

    Article  CAS  Google Scholar 

  31. H. Li, G. Chang, Y. Zhang, J. Tian, S. Liu, Y. Luo, A. M. Asiri, A. O. Al-Youbi, and X. Sun (2012). Photocatalytic Synthesis of Highly Dispersed Pd Nanoparticles on Reduced Graphene Oxide and Their Application in Methanol Electro-oxidation. Catal. Sci. Technol. 2, 1153.

    Article  CAS  Google Scholar 

  32. C. Zhu, S. Guo, and S. Dong (2012). Facile Synthesis of Trimetallic AuPtPd Alloy Nanowires and their Catalysis for Ethanol Electrooxidation. J. Mater. Chem. 22, 14851.

    Article  CAS  Google Scholar 

  33. L. Wang, Y. Zhang, and Z. Li (2013). Chemical Reduced Graphene Oxide/AuPtPd Nanocomposite for Enhanced Electrocatalytic Ability. Mater. Lett. 94, 179.

    Article  CAS  Google Scholar 

  34. S. Zhang, S. Guo, H. Zhu, D. Su, and S. Sun (2012). Structure-Induced Enhancement in Electrooxidation of Trimetallic FePtAu Nanoparticles. J. Am. Chem. Soc. 134, 5060.

    Article  CAS  Google Scholar 

  35. S. Duan, Y. F. Ji, P. P. Fang, Y. X. Chen, X. Xu, Y. Luo, and Z. Q. Tian (2013). Density Functional Theory Study on the Adsorption and Decomposition of the Formic Acid Catalyzed by Highly Active Mushroom-Like Au@Pd@Pt Tri-Metallic Nanoparticles. Phys. Chem. Chem. Phys. 15, 4625.

    Article  CAS  Google Scholar 

  36. Y. Song and S. Chen (2013). Trimetallic Ag@AuPt Neapolitan Nanoparticles. Nanoscale 5, 7284.

    Article  CAS  Google Scholar 

  37. Y. Wu, D. Wang, G. Zhou, R. Yu, C. Chen, and Y. Li (2014). Sophisticated Construction of Au Islands on Pt–Ni: An Ideal Trimetallic Nanoframe Catalyst. J. Am. Chem. Soc. 136, 11594.

    Article  CAS  Google Scholar 

  38. S. Guo, S. Zhang, D. Su, and S. Sun (2013). Seed-Mediated Synthesis of Core/Shell FePtM/FePt (M = Pd, Au) Nanowires and Their Electrocatalysis for Oxygen Reduction Reaction. J. Am. Chem. Soc. 135, 13879.

    Article  CAS  Google Scholar 

  39. V. R. Stamenkovic, B. Fowler, B. S. Mun, G. Wang, P. N. Ross, C. A. Lucas, and N. M. Markovic (2007). Improved Oxygen Reduction Activities on Pt3Ni(111) via Increased Surface Site Availability. Science 315, 493.

    Article  CAS  Google Scholar 

  40. L. Chen, J. M. Chabu, and Y. Liu (2013). Bimetallic AgM (M = Pt, Pd, Au) Nanostructures: Synthesis and Applications for Surface-Enhanced Raman Scattering. RSC Adv. 3, 4391.

    Article  CAS  Google Scholar 

  41. H. Mao, L. Zhou, T. Huang, and A. Yu (2014). Surface Platinum-Rich CuPt Bimetallic Nanoparticles Supported by Partially Unzipped Vapor Grown Carbon Fibers and their Electrocatalytic Activities. RSC Adv. 4, 29429.

    Article  CAS  Google Scholar 

  42. G. R. Zhang, D. Zhao, Y. Y. Feng, B. Zhang, D. S. Su, G. Liu, and B. Q. Xu (2012). Catalytic Pt-on-Au Nanostructures: Why Pt Becomes More Active on Smaller Au Particles. ACS Nano 3, 2226.

    Article  Google Scholar 

  43. V. Selvaraj, M. Vinoba, and M. Alagar (2008). Electrocatalytic Oxidation of Ethylene Glycol on Pt and Pt–Ru Nanoparticles Modified Multi-Walled Carbon Nanotubes. J. Colloid Interface Sci. 322, 537.

    Article  CAS  Google Scholar 

  44. M. Sakthivel, A. Schlange, U. Kunz, and T. Turek (2010). Microwave Assisted Synthesis of Surfactant Stabilized Platinum/Carbon Nanotube Electrocatalysts for Direct Methanol Fuel Cell Applications. J. Power Sources 195, 7083.

    Article  CAS  Google Scholar 

  45. M. Zhiani, B. Rezaei, and J. Jalili (2010). Methanol Electro-Oxidation on Pt/C Modified by Polyaniline Nanofibers for DMFC Applications. Int. J. Hydrogen Energy 35, 9298.

    Article  CAS  Google Scholar 

  46. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery-Jr, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople Gaussian 03, Revision B.05 (Gaussian Inc., Pittsburgh, PA, 2003).

    Google Scholar 

  47. A. D. Becke (1993). Density Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 98, 5648.

    Article  CAS  Google Scholar 

  48. C. Lee, W. Yang, and R. G. Parr (1988). Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron Density. Phys. Rev. B Condens. Matter. 37, 785.

    Article  CAS  Google Scholar 

  49. T. H. Dunning Jr., and P. J. Hay, in Modern Theoretical Chemistry, ed. by H. F. Schaefer III (Plenum, New York, 1976), pp. 1–28.

  50. B. V. Christ Hand Book of Monochromatic XPS Spectra (Wiley, Newyork, 2000).

    Google Scholar 

  51. N. Toshima and T. Yonezawa (1998). Bimetallic Nanoparticles-Novel Materials for Chemical and Physical Applications. New J. Chem. 22, 1179.

    Article  CAS  Google Scholar 

  52. B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2015). Surface Enhanced Vibrational Spectroscopy and First-Principles Study of l-cysteine Adsorption on Noble Trimetallic Au/Pt@Rh Clusters. Phys. Chem. Chem. Phys. 17, 21268.

    Article  CAS  Google Scholar 

  53. B. N. Wanjala, J. Luo, B. Fang, D. Mott, and C. J. Zhong (2011). Gold-Platinum Nanoparticles: Alloying and Phase Segregation. J. Mater. Chem. 21, 4012.

    Article  CAS  Google Scholar 

  54. L. O. Paz-Borbon, R. L. Johnston, G. Barcaro, and A. Fortunelli (2008). Structural Motifs, Mixing, and Segregation Effects in 38-Atom Binary Clusters. J. Chem. Phys. 128, 134517.

    Article  Google Scholar 

  55. B. Loganathan, V. L. Chandraboss, S. Senthilvelan, and B. Karthikeyan (2016). Tailored Rh Surface Facilitates, Enhancement of Raman Scattering in Trimetallic AuPt Core/Rh Shell Composites: Experimental and Theoretical Evidences. Physica E, 75, 223.

    Article  CAS  Google Scholar 

  56. S. Liu, L. Wang, J. Tian, W. Lu, Y. Zhang, X. Wang, and X. Sun (2011). Microwave-Assisted Rapid Synthesis of Pt/Graphene Nanosheet Composites and Their Application for Methanol Oxidation. J. Nanopart. Res. 13, 4731.

    Article  CAS  Google Scholar 

  57. H. A. Gasteiger, N. Markovic, P. N. Ross-Jr, and E. J. Cairns (1993). Methanol Electrooxidation on Well-Characterized Platinum Ruthenium Bulk Alloys. J. Phys. Chem. 97, 12020.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FE-SEM images/elemental color mapping were recorded at Department of Nanoscience and Nanotechnology, Bharathiar University, Coimbatore. The authors are highly thankful to Avinash Balakrishnan, Assistant Professor, Amrita Center for Nanoscience, Kerala-India, for XPS data. Zeta Potential and DLS studies were carried out at Department of Nanoscience, Karunya University, Coimbatore. G. Mariappan and V. L. Chandraboss are acknowledged for helpful discussions on electronic density of states (DOS) plot. Author B. L wishes to acknowledge the University Grants Commission (UGC)-Basic Sciences Research (BSR)-Special Assistant Programme (SAP) Fellowship from the UGC, New Delhi, India. Finally we thank the editor and referees for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 589 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loganathan, B., Karthikeyan, B. Tailored Au and Pt Containing Multi-metallic Nanocomposites for a Promising Fuel Cell Reaction. J Clust Sci 28, 1463–1487 (2017). https://doi.org/10.1007/s10876-017-1157-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-017-1157-5

Keywords

Navigation