Skip to main content
Log in

A Perspective on the Science of Clusters

  • Perspective
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this article, the interdisciplinary science of clusters is discussed in general terms. Different types of clusters across vast scales of matter, energy, space, and time in the physical world are discussed. Specific examples of clusters in chemistry and physics are used to illustrate various principles or models of clustering processes of atoms and molecules as well as to demonstrate the exquisite beauty and pattern of clusters and the clustering phenomena so ubiquitous in nature. Nowadays, “designer clusters” can be made with tailorable properties and used as “building blocks” to form supermolecules, or to construct large cluster-based hierarchical materials with tunable properties, or to fabricate cluster-based devices with specific functions, etc., thereby providing a materials base for nanotechnology. Clustering is a spontaneous self-assembly process and the similarity across scales reflects the intrinsic self-organization and self-similarity principle of the physical world. Geometry and symmetry transcend all clustering processes, in ordered as well as in disordered systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. P. Andres, R. S. Averback, W. L. Brown, L. E. Brus, W. A. Goddard III, A. Kaldor, S. G. Louie, M. Moscovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. Spaepen, and Y. Wang (1989). J. Mater. Res. 4, 704–736.

    Article  CAS  Google Scholar 

  2. A. F. Carley, P. R. Davies, G. J. Hutchings, M. S. Spencer (eds.) Surface Science and Catalysis (Kluwer/Plenum, London, 2002).

  3. G. A. Ozin, A. C. Arsenault, L. Cademartiri Nanochemistry (RSC Publ., Cambridge, 2009).

  4. Y. Kawazoe, T. Kondow, K. Ohno (eds.) Clusters and Nanomaterials (Spring-Verlag, Berlin, 2002).

  5. A. W. Castleman (1990). J. Cluster Sci. 1, 3–27.

    Article  CAS  Google Scholar 

  6. P. Jena and A. W. Castleman Jr (2006). Proc. Nat. Acad. Sci. USA 103, 10560–10569.

    Article  CAS  Google Scholar 

  7. B. K. Teo and H. Zhang (1990). J. Cluster Sci. 1, 155–187.

    Article  Google Scholar 

  8. B. K. Teo and N. J. A. Sloane (1985). Inorg. Chem. 24, 4545–4558.

    Article  CAS  Google Scholar 

  9. B. K. Teo and N. J. A. Sloane (1986). Inorg. Chem. 25, 2315–2322.

    Article  CAS  Google Scholar 

  10. A. L. Mackay (1962). Acta Crystallogr. 15, 916–918.

    Article  CAS  Google Scholar 

  11. N. J. A. Sloane and B. K. Teo (1985). J. Chem. Phys. 83, 6520–6534.

    Article  CAS  Google Scholar 

  12. O. Echt, K. Sattler, and E. Recknagel (1981). Phys. Rev. Lett. 47, 1121.

    Article  CAS  Google Scholar 

  13. R. L. Johnston Atomic and Molecular Clusters (Taylor and Francis, New York, 2002).

    Book  Google Scholar 

  14. G. Schmid (1992). Chem. Rev. 92, 1709 and references therein.

    Article  CAS  Google Scholar 

  15. E. G. Mednikov and L. F. Dahl (2010). Phil. Trans. R. Soc. A 368, 1301–1332.

    Article  CAS  Google Scholar 

  16. A. Ceriotti, F. Demartin, G. Longoni, M. Manassero, M. Marchionna, G. Piva, and M. Sansoni (1985). Angew. Chem. Int. Ed. 24, 697–698.

    Google Scholar 

  17. W. A. de Heer (1993). Rev. Mod. Phys. 65, 611–676 and references therein.

    Article  Google Scholar 

  18. B. K. Teo and H. Zhang (1995). Coord. Chem. Rev. 143, 611–636 and references therein.

    Article  CAS  Google Scholar 

  19. B. K. Teo, H. Zhang in Chapter 3 of Metal Nanoparticles: Synthesis, Characterization, and Applications, D. L. Feldheim, C. A. Foss, Jr. (eds.), (Marcel Dekker, New York, 2002, pp. 55–88).

  20. B. K. Teo and H. Zhang (1991). Proc. Nat. Acad. Sci. USA 88, 5067–5071 and references therein.

    Article  CAS  Google Scholar 

  21. M. R. Hoare and P. Pal (1971). Adv. Phys. 20, 161.

    Article  CAS  Google Scholar 

  22. C. L. Briant and J. J. Burton (1978). Phys. Status Solidi 85, 393–402.

    Article  CAS  Google Scholar 

  23. B. B. Mandelbrot The Fractal Geometry of Nature (Freeman, New York, 1983).

    Google Scholar 

  24. H. O. Peitgen and P. Richter The Beauty of Fractals (Springer, Heidelberg, 1986).

    Book  Google Scholar 

  25. O. A. Belyakova and Y. L. Slovokhotov (2003). Russ. Chem. Bull. Int. Ed. 52, 299–2327.

    Article  Google Scholar 

  26. A. Harris, R. S. Kidwell, and J. A. Northby (1984). Phys. Rev. Lett. 53, 2390–2393.

    Article  CAS  Google Scholar 

  27. W. Branz, N. Malinowski, H. Schaber, and T. P. Martin (2000). Chem. Phys. Lett. 328, 245.

    Article  CAS  Google Scholar 

  28. K. Hansen, K. H. Hohmann, R. Muller, and E. E. B. Campbell (1996). J. Chem. Phys. 105, 6088.

    Article  CAS  Google Scholar 

  29. S.-J. Xu, J. M. Nilles, D. Radisic, W.-J. Zheng, S. Stokes, K. H. Bowen, R. C. Becker, and I. Boustani (2003). Chem. Phys. Lett. 379, 282–286.

    Article  CAS  Google Scholar 

  30. H. Zhang, X. Wang, K. Zhang, and B. K. Teo (2000). J. Solid State Chem. 152, 191–198.

    Article  CAS  Google Scholar 

  31. See, for example, a special issue on “Excited-State and Reactive Clusters” edited by B. K. Teo (2013). J. Cluster Sci. 24, 377–379.

  32. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141–2143.

    Article  CAS  Google Scholar 

  33. S. J. Bjjzfrnholm, O. Borggreen, K. Echt, J. Hansen, J. Pedersen, and H. D. Rasmussen (1991). Z. Phys. D 19, 47.

    Article  Google Scholar 

  34. K. Clemenger (1985). Phys. Rev. B 32, 1359.

    Article  CAS  Google Scholar 

  35. T. P. Martin, T. Bergmann, H. Gohlich, and T. Lange (1990). Chem. Phys. Lett. 172, 209.

    Article  CAS  Google Scholar 

  36. T. P. Martin, T. Bergmann, H. Gohlich, and T. Lange (1990). Phys. Rev. Lett. 65, 748.

    Article  Google Scholar 

  37. T. P. Martin, T. P., T. Bergmann, and N. Mallnowski (1990). J. Chem. Soc. Faraday Trans. 86, 2489.

  38. T. P. Martin, T. Bergmann, H. Gohlich, and T. Lange (1991). Z. Phys. D 19, 25.

    Article  CAS  Google Scholar 

  39. A. W. Castleman and S. N. Khanna (2009). Phys. Chem. C 113, 2664.

    Article  CAS  Google Scholar 

  40. J. U. Reveles, S. N. Khanna, P. J. Roach, and A. W. Castleman Jr (2006). Proc. Nat. Acad. Sci. 103, 18405.

    Article  CAS  Google Scholar 

  41. K. E. Schriver, J. L. Persson, E. C. Honea, and R. L. Whetten (1990). Phys. Rev. Lett. 64, 2539.

    Article  CAS  Google Scholar 

  42. P. D. Jadzinsky, G. Calero, C. J. Ackerson, D. A. Bushnell, and R. D. Kornberg (2007). Science 318, 430–433.

    Article  CAS  Google Scholar 

  43. L. T. Katakuse, Y. Ichihara, Y. Fujita, T. Matsuo, T. Sakurai, and H. Matsuda, H. Int. J. Mass Spectro. Ion. Proc. 1985, 67, 229 and 1986, 74, 33.

  44. C. E. Briant, B. R. C. Theobald, J. W. White, L. K. Bell, D. M. P. Mingos, and A. J. Welch (1981). J. Chem. Soc., Chem. Commun. 1981, 201.

    Article  Google Scholar 

  45. G. Schmid (1990). Inorg. Synth. 27, 214–218.

    Article  CAS  Google Scholar 

  46. B. K. Teo, X. Shi, and H. Zhang (1992). J. Am. Chem. Soc. 114, 2743–2745.

    Article  CAS  Google Scholar 

  47. C. Zeng, et al. (2012). Angew. Chem. Int. Ed. 51, 13114–13118.

    Article  CAS  Google Scholar 

  48. A. Desireddy, B. C. Conn, J. Guo, B. Yoon, R. N. Barnett, B. N. Monahan, K. Kirschbaum, W. P. Griffith, R. L. Whetten, U. Landmann, and T. P. Bigioni (2013). Nature 501, 399–402.

    Article  CAS  Google Scholar 

  49. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Hakkinen, and N. Zheng (2013). Nature Commun. doi:10.1038/ncomms3422.

    Google Scholar 

  50. H. Qian, Y. Zhu, and R. Jin (2012). Proc. Nat. Acad. Sci. USA 109, 696–700.

    Article  CAS  Google Scholar 

  51. B. K. Teo, K. Keating, and Y. H. Kao (1987). J. Am. Chem. Soc. 109, 3494–3495.

    Article  CAS  Google Scholar 

  52. H. Zhang, D. E. Zelmon, L. G. Deng, H. K. Liu, and B. K. Teo (2001). J. Am. Chem. Soc. 123, 11300–11301.

    Article  CAS  Google Scholar 

  53. M. L. Isabelle, A. Billas, A. Chatelain, and W. A. de Heer (1994). Science 265, 1682.

    Article  Google Scholar 

  54. See “Star cluster” in Wikipedia.

  55. “Hubble Pinpoints Furthest Protocluster of Galaxies Ever Seen” (ESA/Hubble Press Release, November 7, 2012) and “Hubble image of MACS J0717 with mass overlay” (ESA/Hubble Press Release, January 13, 2012).

  56. See “Dark Energy” and “Dark Matter” in Wikipedia.

  57. See “Standard Model” of particle physics in Wikipedia.

  58. See “Physics beyond the Standard Model” in Wikipedia.

  59. G. Lisi and J. O. Weatherall (2010). Sci. Amer. 303, 54–61.

    Article  Google Scholar 

  60. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162–163. See also “Fullerene” in Wikipedia.

    Article  CAS  Google Scholar 

  61. See “Rydberg matter” in Wikipedia.

  62. B. K. Teo (2012). J. Cluster Sci. 23, 1–3. and the reviews contained therein.

    Article  CAS  Google Scholar 

  63. See “Antimatter” in Wikipedia.

  64. B. K. Teo and W. K. Li (2012). J. Cluster Sci. 23, 661–672.

    Article  CAS  Google Scholar 

  65. M. Deutsch (1951). Phys. Rev. 83, 866.

    Article  CAS  Google Scholar 

  66. J. A. Wheeler (1946). Ann. N. Y. Acad. Sci. 48, 219.

    Article  Google Scholar 

  67. E. A. Hylleraas and A. Ore (1947). Phys. Rev. 71, 493.

    Article  CAS  Google Scholar 

  68. D. B. Cassidy and A. P. Mills (2007). Nature 449, 195.

    Article  CAS  Google Scholar 

  69. D. B. Cassidy and A. P. Mills (2008). Phys. Rev. Lett. 100, 013401.

    Article  CAS  Google Scholar 

  70. G. Baur, et al. (1996). Phys. Lett. B 368, 251.

    Article  CAS  Google Scholar 

  71. See “Nanomaterials” in Wikipedia.

  72. See “Nanotechnology” in Wikipedia.

  73. A. P. Alivisatos (1996). Science 271, 933–937.

    Article  CAS  Google Scholar 

  74. C. B. Murray, D. J. Norris, and M. G. Bawendi (1993). J. Am. Chem. Soc. 115, 8706–8715.

    Article  CAS  Google Scholar 

  75. R. P. Goodman, I. A. T. Schaap, C. F. Tardin, C. M. Erben, R. M. Berry, C. F. Schmidt, and A. J. Turberfield (2005). Science 310, 1661–1665.

    Article  CAS  Google Scholar 

  76. B. K. Teo and X. H. Sun (2007). Chem. Rev. 107, 1454–1532 and references therein.

    Article  CAS  Google Scholar 

  77. B. K. Teo and X. H. Sun (2007). J. Cluster Sci. 18, 346–357.

    Article  CAS  Google Scholar 

  78. D. D. D. Ma, C. S. Lee, F. C. K. Au, S. Y. Tong, and S. T. Lee (2003). Science 299, 1874.

    Article  CAS  Google Scholar 

  79. See, for example, “Functional Hybrid Nanomaterials” ed. by B. K. Teo, Coord. Chem. Rev. 2009, 253, 2785–2786, and articles contained therein.

  80. B. Pelaz, et al. (2012). ACS Nano 6, 8468–8483.

    Article  CAS  Google Scholar 

  81. S. A. Claridge, A. W. Castleman Jr, S. N. Khanna, C. B. Murray, A. Sen, and P. S. Weiss (2009). ACS Nano 3, 244–255.

    Article  CAS  Google Scholar 

  82. S. Mandal, A. C. Reber, M. Qian, P. S. Weiss, S. N. Khanna, and A. Sen (2013). Acc. Chem. Res. doi:10.1021/ar3002975.

    Google Scholar 

  83. S. M. Kauzlarich (ed.) Chemistry, Structure, and Bonding of Zintl Phases and Ions, (VCH, New York, 1996).

  84. S. Scharfe, F. Kraus, S. Stegmaier, A. Schier, and T. F. Fassler (2011). Angew. Chem. Int. Ed. 50, 3630–3670 and references therein.

    Article  CAS  Google Scholar 

  85. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn (1984). Phys. Rev. Lett. 53, 1951–1953.

    Google Scholar 

  86. D. L. D. Caspar and A. Klug (1962). Cold Spring Harbor Symp. Quant. Biol. 27, 1–24.

    Google Scholar 

Download references

Acknowledgments

I would like to dedicate this review to Professors Larry and June Dahl of University of Wisconsin (Madison) in appreciation of their guidance and friendship over the years. I thank Ken Howell for suggesting the title and scope of this perspective review on the science of clusters. I am particularly grateful for his careful reading of, and helpful comments on, the manuscript. Partial financial support of iCHEM, Xiamen University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boon K. Teo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teo, B.K. A Perspective on the Science of Clusters. J Clust Sci 25, 5–28 (2014). https://doi.org/10.1007/s10876-013-0678-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-013-0678-9

Keywords

Navigation