Skip to main content
Log in

Factors Affecting Laser-Excited Photoluminescence from ZnO Nanostructures

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

The role of defects on laser-excited photoluminescence of various ZnO nanostructures has been investigated. The study shows that defects present in ZnO nanostructures, specially Zn-related defects play a crucial role in determining the laser-excited photoluminescence intensity (LEI). ZnO nanoparticles as well as nanorods (NR) annealed in oxygen atmosphere exhibit remarkable enhancement in LEI. A similar enhancement is also shown by Al-doped ZnO NR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. L. Wang and J. Song (2006). Science 312, 242.

    Article  CAS  Google Scholar 

  2. N. Chong, H. L. W. Chan, and C. L. Choy (2002). Sens. Actuators A 96, 231.

    Article  Google Scholar 

  3. C. C. Hsiao, K. Y. Huang, and Y. C. Hu (2008). Sensors 8, 185.

    Article  CAS  Google Scholar 

  4. S. M. Peng, Y. K. Su, L. W. Ji, S. J. Young, C. N. Tsai, W. C. Chao, Z. S. Chen, and C. Z. Wu (2011). IEEE Electron Device Lett. 32, 533.

    Article  CAS  Google Scholar 

  5. W. J. E. Beek, M. M. Wienk, and R. A. J. Jansen (2004). Adv. Mater. 16, 1009.

    Article  CAS  Google Scholar 

  6. J. M. Hammer, D. J. Channin, M. T. Duffy, and J. P. Wittke (1972). Appl. Phys. Lett. 21, 358.

    Article  CAS  Google Scholar 

  7. M. S. Wu, A. Azuma, T. Shiosaki, and A. Kawabata (1987). J. Appl. Phys. 62, 2482.

    Article  CAS  Google Scholar 

  8. M. Wraback, H. Shen, S. Liang, C. Gorla, and Y. Lu (1998). J. Electron. Mater. 27, 1005.

    Article  CAS  Google Scholar 

  9. E. Comini, C. Baratto, G. Faglia, M. Ferroni, and G. Sberveglieri (2007). J. Phys. D 40, 7255.

    Article  CAS  Google Scholar 

  10. A. B. Djurisic, A. M. C. Ng, and X. Y. Che (2010). Prog. Quantum Electron. 34, 191.

    Article  CAS  Google Scholar 

  11. Z. K. Tang, G. K. L. Wong, P. Yu, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa (1998). Appl. Phys. Lett. 72, 3270.

    Article  CAS  Google Scholar 

  12. H. C. Chen, M. J. Chen, M. K. Wu, Y. C. Cheng, and F. Y. Tsai (2008). IEEE J Sel. Top. Quantum Electron. 14, 1053.

    Article  CAS  Google Scholar 

  13. L. Cao, B. Zou, C. Li, Z. Zhang, S. Xie, and G. Yang (2004). Europhys. Lett. 68, 740.

    Article  CAS  Google Scholar 

  14. B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, and Z. L. Wang (2006). J. Phys. Chem. B 110, 12865.

    Article  CAS  Google Scholar 

  15. A. B. Djurisic and Y. H. Leung (2006). Small 2, 944.

    Article  CAS  Google Scholar 

  16. H. C. Chen, M. J. Chen, T. C. Liu, J. R. Yang, and M. Shiojiri (2010). Thin Solid Films 519, 536.

    Article  CAS  Google Scholar 

  17. Y. T. Shih, C. Y. Chiu, C. W. Chang, J. R. Yang, M. Shiojiri, and M. J. Chen (2010). J. Electrochem. Soc. 157, 879.

    Article  Google Scholar 

  18. B. Q. Cao, K. Sakai, D. Nakamura, I. A. Palani, H. B. Gong, H. Y. Xu, M. Higashihata, and T. Okada (2011). J. Phys. Chem. C 115, 1702.

    Article  CAS  Google Scholar 

  19. H. N. Soo, H. S. Shim, J. H. Seo, S. M. Park, B. K. Min, J. Kim, and J. K. Song (2011). Chem. Phys. Lett. 505, 51.

    Article  Google Scholar 

  20. M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang (2001). Science 292, 1897.

    Article  CAS  Google Scholar 

  21. H. Ishihara, A. Syouji, Y. Segawa, and M. Bamba (2007). J. Phys. Condens. Mater. 19, 5008.

    Article  Google Scholar 

  22. L. K. V. Vugt, B. Piccione, C. H. Cho, P. Nukala, and R. Agarwal (2011). Proc. Natl. Acad. Sci. USA 108, 10050.

    Article  Google Scholar 

  23. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto (1998). Appl. Phys. Lett. 73, 1038.

    Article  CAS  Google Scholar 

  24. D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto (1997). Appl. Phys. Lett. 70, 2230.

    Article  CAS  Google Scholar 

  25. Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng (2001). Appl. Phys. Lett. 78, 407.

    Article  CAS  Google Scholar 

  26. J. B. Cui, Y. C. Soo, A. Thomas, H. Kandel, T. P. Chen, and C. P. Daghlian (2008). J. Appl. Phys. 104, 043521.

    Article  Google Scholar 

  27. A. B. Djurišić, W. M. Kwok, W. K. Chan, D. L. Phillips, Y. H. Leung, M. H. Xie, H. Y. Chen, C. L. Wu, and S. Gwo (2006). J. Appl. Phys. 99, 033517.

    Article  Google Scholar 

  28. C. Torres-Torres, M. Trejo-Valdez, H. Sobral, P. Santiago-Jacinto, and J. A. Reyes-Esqueda (2009). J. Phys. Chem. C 113, 13515.

    Article  CAS  Google Scholar 

  29. C. Pacholski, A. Kornowski, and H. Weller (2002). Angew. Chem. Int. Ed. 41, 1188.

    Article  CAS  Google Scholar 

  30. K. Biswas, B. Das, and C. N. R. Rao (2008). J. Phys. Chem. C 112, 2404.

    Article  CAS  Google Scholar 

  31. Q. Ahsanulhaq, S. H. Kim, J. H. Kim, and Y. B. Hahn (2008). Mater. Res. Bull. 43, 3483.

    Article  CAS  Google Scholar 

  32. U. K. Gautam, L. S. Panchakarla, B. Dierre, X. Fang, Y. Bando, T. Sekiguchi, A. Govindaraj, D. Golberg, and C. N. R. Rao (2009). Adv. Funct. Mater. 19, 131.

    Article  CAS  Google Scholar 

  33. C. S. Rout, G. U. Kulkarni, and C. N. R. Rao (2009). J. Nanosci. Nanotechnol. 9, 5652.

    Article  CAS  Google Scholar 

  34. J. Fallert, F. Stelzl, H. Zhou, M. Wissinger, M. Hauser, C. Klingshirn, H. Kalt, D. S. Kim, and M. Zacharias (2008). J. Korean Phys. Soc. 53, 2840.

    Article  CAS  Google Scholar 

  35. L. S. Panchakarla, Y. Sundarayya, S. Manjunatha, A. Sundaresan, and C. N. R. Rao (2010). ChemPhysChem 11, 1673.

    Article  CAS  Google Scholar 

  36. W. M. Kwok, A. B. Djurišić, Y. H. Leung, D. Li, K. H. Tam, D. L. Phillips, and W. K. Chan (2006). Appl. Phys. Lett. 89, 183112.

    Article  Google Scholar 

  37. A. El. Manounia, F. J. Manjónb, M. Mollarb, B. Maríb, R. Gómezc, M. C. Lópezd, and J. R. Ramos-Barradod (2006). Superlattices Microstruct. 39, 185.

    Article  Google Scholar 

  38. T. Strachowski, E. Grzanka, W. Lojkowski, A. Presz, M. Godlewskib, S. Yatsunenko, H. Matysiak, R. R. Piticescu, and C. Monty (2007). J. Appl. Phys. 102, 073513.

    Article  Google Scholar 

  39. S. Yun, J. Lee, J. Yang, and S. Lim (2010). Phys. B 405, 413.

    Article  CAS  Google Scholar 

  40. L. M. Li, Z. F. Du, and T. H. Wang (2010). Sens. Actuators B 147, 165.

    Article  Google Scholar 

  41. A. Djelloula, M.-S. Aidab, and J. Bougdirac (2010). J. Lumin. 130, 2113.

    Article  Google Scholar 

  42. Y. Wang, N. Ohashi, Y. Wada, I. Sakaguchi, T. Ohgaki, and H. Haneda (2006). J. Appl. Phys. 100, 023524.

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge Department of Science and Technology (DST), Government of India for post doctoral fellowship for one of us (PK) under its nanomission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. N. R. Rao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, B., Kumar, P. & Rao, C.N.R. Factors Affecting Laser-Excited Photoluminescence from ZnO Nanostructures. J Clust Sci 23, 649–659 (2012). https://doi.org/10.1007/s10876-012-0453-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-012-0453-3

Keywords

Navigation